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computing the value of the expression, the Maple model regards each number as being padded with zeros
indefinitely. This is important for rounding.

For Maple 7, floating-point division has been sped up relative to previous Maple releases. As well
as such efficiency improvements, Maple’s floating point now conforms to the IEEE standards. Maple
also supports a signed zero, as advocated by Kahan. This paper describes some further improvements in
floating-point performance.

2 Inverse functions and iterative schemes

We shall describe here the evaluation of the square root function and the natural logarithm function,
but the same methods can be applied to many other functions, for example, division, nth roots, and the
Lambert W function. All inverting schemes are variations on, or extensions to, Newton iteration. We
therefore start by giving a uniform treatment of these schemes.

2.1 General iteration formulae

Consider solving the equation f(x) = 0, given an initial estimate x0 for the solution. We expand f(x) as
a Taylor series around x0.

f(x) = f(x0) + (x− x0)f ′(x0) + 1
2 (x− x0)2f ′′(x0) +

1
6

(x− x0)3f ′′′(x0) + . . . (1)

Setting h = x− x0 and assuming f(x) = 0, we can solve for h by either the Lagrange inversion theorem,
or, equivalently, series reversion. Abbreviating f(x0), f ′(x0), f ′′(x0) to f, f ′, f ′′ for clarity, we write

h = − f

f

−
ff
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Square root. Let xn be an approximation to x = A1/2. Write

x =
(
x2

n + A− x2
n

)1/2
= xn

(
1 + A/x2

n − 1
)1/2

= xn

∞∑
k=0

(
1/2
k

) (
A

x2
n

− 1
)k

. (5)

This is an example of an expansion by residuals according to Popov and Hare [4].
Taking any finite number of terms, we obtain an iteration formula for xn+1 from the exact formula

for x. The first two terms reproduce the Newton iteration formula, also called Heron’s rule by Kahan
[5]. Taking the first three terms gives Chebyshev’s method [6] or Halley’s method, after conversion to a
fraction as described above. Higher-order methods are obviously available by taking more terms in the
series.

Markstein [1, 2] was apparently the first to propose that a faster way to compute x =
√

A is to
compute first the reciprocal y = 1/

√
A, followed by x = Ay. Letting yn be an approximation to y, we

write

y = yn(1 + (Ay2
n − 1))−1/2 = yn

∑
k=0

(
−1/2

k

)
(Ay2

n − 1)k (6)

= yn

(
1 +

1
2

(1−Ay2
n) +

3
8

(1−Ay2
n)2 +

5
16

(1−Ay2
n)3 . . .

)
. (7)

Since the potential advantage of this series is the fact that there is no division, there is no point in forcing
this into Halley’s form. Notice that in either base 2 or in base 10, the coefficients can be expressed exactly
as multiplying factors. It is obvious that (6) is a convergent series for |Ay2

n − 1| < 1.

Logarithm function.
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Theorem. Given y0 correct to d > 1 digits (rounded), a Newton improvement is correct to 2d− 1 digits
and a Chebyshev step is correct to 3d− 2 digits.
Proof. Let y1 = y0 + 1

2 y0(1−Ay2
0) be the result of the Newton step. The forward error is then

|y − y1|
y

=
|y − y0 − 1

2 y0(1−Ay2
0)|

y
=
|2y3 − 3y0y2 + y3

0 |
2y3

=
(y − y0)2(2y + y0)

2y3
.

So
|y − y1|

y
≈ 3(y − y0)2

2y2
≤ 3

2 φ2 102−2d =
(

3
2 φ2

)
101−(2d−1) .

Therefore in the worst case of φ = 1/2, y1 is correct to 2d− 1 rounded digits. In the case of a result y0

correct to d truncated digits, then y1 is accurate to 2d− 2 digits.
After a Chebyshev step, we have y1 = y0 + 1

2 y0(1−Ay2
0) + 3

8 y0(1−Ay2
0)2. Then

|y − y1|
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3.4 Fine-grain precision control

From the point of view of optimizing the computation, the basic effects are that a higher-order method
requires fewer steps, but requires more computation per step. However, this section will show that, with
a fine-grained control of precision, the relevant considerations are not the obvious ones. In fact we shall
see that the total number of iterations used is not a critical factor in the overall time, but only the
characteristics of the final loop.

In Maple, a reasonably accurate model of the cost of arithmetic is that two numbers with m and n
digits can be multiplied in O(mn) time. We combine this model with some observations concerning the
required precision at each step. For the sake of definiteness, we conduct the discussion in terms of square
root.

Consider a Newton step in the inverse square root iteration. We write it as a pair of equations:

r = 1−Ay2
n , (11)

yn+1 = yn + 1
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4 Implementation notes

4.1 Expected input data

The number of digits in the input data can be quite different from the number of digits in the output
value. Thus there is a need in computer algebra systems for the square root of a small, exactly known
number, such as an integer. Therefore the performance of an algorithm depends upon two parameters:
the size (length) of the input and the size of the the requested output. The case in which both lengths
are equal is the obvious case, but the case in which the input is short is significant.

4.2 Order of evaluation

The residual 1−Ax2




