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2 Graphs and special values

A graph of 1(z) for real z can be produced easily in Maple by the command
plot([y+In(y),y,y=0.001..2]);. A section of the Riemann surface for 1(z)
can be plotted by the following commands:

omega = mu + I*nu;

x := evalc(Re(omegatin(omega)));

y := evalc(Im(omega+in(omega)));

plot3d( [x,y,mu], mu=-4..2, nu=-4._4,
colour=black, axes=BOXED,



In addition to this basic point, we here present new branch point series (with
the correct closure), new asymptotic series (from the equivalent series for the
Lambert W function), and new proofs of the analytic properties of 1(z), using
properties of the unwinding number.

Fig. 1. The z-plane, showing the slit (equivalently, branch cut) we call the \doubling
line" (above) and its \re ection™, across each of which the Wright I function is discon-
tinuous. Along both slits, the closure (indicated by short lines extending down from
the slits) is taken from below ] clockwise around the branch points ] to agree with the
closure of the unwinding number.

We here summarize some properties of I, proved in [9]. First, equation (2) has
a unique solution, ¥(z), for all z 2 C except on the line L deflned by z = t&ii..
fort « j1. When z is on Lp, the equation has precisely two solutions, these
being 1(z) and ! (z j 2..1); we therefore call Lp the \doubling line". See Figure 1
and Figure 2. On the re ection of the doubling line, namely, the line deflned by
z=tiji. withte j1, equation (2) has no solution at all?>. Second, ! is an
analytic function of z except on the doubling line and its re ection z =t j i..
for t « j1, where 1(z) is discontinuous. This immediately gives the following.
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Theorem: For all z 2 C and integers k,

Wi (2) = 1(Ink(2)); ®

where Ink(z) = Inz + 2...ik. [This logarithmic notation is discussed further in a
later section.]

Proof. This holds at least provided z is not in the interval j exp(jl) =z <0
and k = j 1, which is the image in the domain of W of the critical doubling line
(and also the image of its re ection). If z is in the interval j exp(jl) «z <0, and
k = j1, then we have instead that Wy(z) = I (Injzj+i..) since K(Injzj+i..) =0,
and that W;1(z) = !(Injzj j i..) since K(Injzj j i..) = il. Phrasing this the
other way, we have

Wo(z) = 1(In2)
and
W;1(z) =1(nz j 2.0):
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Fig. 2. The I-plane, showing the images of doubling slit and its re ection. The negative
real I-axis is not, per se, a branch cut (this is the range of the function) but it is a
branch cut of ! +In !, which is why that expression is not exactly the inverse function
for 1.



2.2 Properties of w
We group the properties into analytic properties and algebraic properties.

Analytic properties Theorems and lemmas:
(i) ¥ (2) is single-valued
(i) 1:C ¥ Cisonto Cnf0g.
(ii)(@) Exceptatz= j18i.., where I(z) = j1, ! :C ¥ C is injective; hence 1i?
exists uniquely except at 0 and j 1.
(iii) See Figureg.

_ <y+In(y) j 2..i il<y<il
tily)= _ jl8i. y=il
T y+In(y) otherwise:

(iv) (a) ! is continuous (in fact analytic) exceptatz =t8i.. fort = j1.
(b) Forz=t8i.andt= j



(V) (@) Wik (e)eWr@E) = ez = 1(2)e'@ Dy deflnition. Taking logs,
In(te') = Ine?, or ' +1Int § 2.iK(! +1In1) = z j 2.iK(z). Therefore,
T+In! =z O K +Inl) =K(2).

(V) (b) K(Wk(z)(e*) + InWk(,y(e?)) = K(z). K(a) can change only when a =
t+ (2k+1).. for k 2 Z, or when a is itself discontinuous. We distinguish two
cases, therefore:

(1) Wk(z)(e*)+InWk(,(e?) can be discontinuous at discontinuities of K(z),
namely z = t+ (2k + 1).. for k 2 Z, or when Wy ,)(e?) < 0. We ignore
discontinuities of K(z) for the moment. Wi )(e*) < 0 only when (i)
K@ =0ande* <0 QO z=t+i., te jl, or (ii) K(z) = jl1 and
ee<0 O z=tji. t= jl Both (i) and (ii) are discontinuities of
K(z) anyway.

(2) K(¥(z2)+In 1(2)) can be discontinuous when ' +In ! = t+(2k+1)..i =)
le!' = jet OO 1(z) animage of Ri under W. Therefore z  a pre-
image of Ri under e*.

But this is just z = t + (2k + 1)...i, which is a place of discontinuity of K(z).

Note that K is integral-valued. Therefore, if 1(z) is such that K(1(z) +

In(¥(2))) = K(z) for any z in a strip (2k j 1).. < Imz = (2k + 1).., where

I +[n(1) is continuous, then we have K(!(z) + In 1(z)) = K(z) everywhere

in that strip. Let us choose k 2 Z, and look at the pre-image of 1 = 2k...i.

Then ' +1In! = 2k..i + In(2k..) +i..=2 and hence K(! +In1) = k. Since

I = Wg)(e?) we have Te' = e and 2k..ite?! = e? O €* = 2k..i;

moreover 2K..i 2 range W), and therefore K(z) = k. Therefore

z = In(2k..i) + 2k..i
=1+Int;:

This establishes that if ¥(z) = Wik (e?), then ! +1In ! =z except possibly
on the edges of the strips z = t+(2k+1)...i. Now we have K(1 (2)+In(!(2))) =
K@) if 2k j 1).. < Im(z) < (2k +1).., and hence ! +In! = z. Note
that 1(z) = Wk (e?) is continuous from below as Im(z) ¥ (2k +1)..7.
Therefore, provided that 1(z)  R¥, 1(z) + In(¥(z)) will be continuous
as Im(z) ¥ (2k + 1)..%. Therefore, since Im(1(z) + In1(z)) = Im(z) for
(2k j 1).. <Im(z) < 2k +1).., we have K(! +In 1) = K(z) even if Im(z) =
(2k +1)... by continuity:

Im(z) !Ii(g;ﬂ)m, K(1(2) +1In1(2))

lim K(2):
Im(z) ¥ (2k+1)..—

Therefore K(1(z) +In 1(2)) = K(2) unless 1(z) <0, and Im(z) = ji..
(vi) This now follows immediately.



2.4 Corollary

Deflne z(k; )=x+it(2k+ )... Then z(k +1; j1) = z(k; 1) since x +i ¢ (2k +
2il).. =x+it(2k+1).,since Kx+it(2k+ ).)=kfor j1< = 1.Since

Wi (@H1@K+ Dy = W (e ) = Wi (e¥(cos.. +isin.. ));
we have Wi (¥ ) ¥ Wi (jeX+it0*)as ¥ 1i,and

lim Wy k1 ))(eZ(k+1; Y= lim Wi (XH1@+2+ )y
51 LIRS

since K(x+it(2k+2+ )..



{ Series about z = a, where a = 1,+In 1,: the following (computed by Maple)
is the beginning of the series for ! which contains second order Eulerian
numbers.

1 1 1
1 _ 8 (7= — & (7 :39)?
-a+ 1+ !a(z 1 a)+ 2| (1+ !a)3 (Z 1 a)

120, s, 11612181, +1) .,
(N @iay+g 1+1,)7 @ia)
11,403 5802220, 1) .
la (1+!a)9 (Z la)
1 9,(1200,% § 4441,3+3281,2 521, +1)
+§ a+1yn (zia)y
+0((z i @)")
The general term is [6]:
= o W) @ia)n @
T @+ )it
n.,
where .
Na'n = 1
Gn(W) = o GDAwet ®)
k=0

is deflned in terms of second order Eulerian numbers.

{ Series about 1: This series was originally due to de Bruijn, and Comtet
identifled the coe—cients as Stirling numbers.

In(z) . 1In(@)(n2) i 2)
z 2 z2
L 1@ (i9In@) +6+2In@?) 1
6 z3 12
In(z) 3In(2)® § 22In(z)? +36In(2) i 12)
Z4

%In(z)( i 1251n(z)® + 3501In(z)? + 12In(2)*

1>»27jIn()+

1
i 300In(z) + 60)=z° + O(Z—e)
The general term is (translating from the Lambert W results of [2, 7]) 1(z) =

zilnz+ Cm Q)
“.0m,0
h i

where cm = (i1)" 57 =m



can be rearranged in several ways, following [9] and [6]: 1(z) =

XGgyn X GymT o

zilnz+ InMz: @)

z"n m! nim+1
n,1 m=1

Using a new variable ¥ = z=(1 + z), we get ! (2) =
XX pmz > " il

(i 1)p+m i lip+m p +m 1 (8)
P .2

Zilnz+
mizm
m,1 p=0

where the numbers in curly braces are 2-associated Stirling numbers. Using
L,=In(li¢)=InQjInz=z)and - = =1 i ¢) = 1=(z(1 i Inz=z)) =
1=(z j Inz), series (83) and (84) from [6] become

1z)=zjlInz jL,

<
L J

o Sy W ©)
! _ ! nim+1 m!
n,1 m=1
and
'z)=zjilnz;jL,
%o .
LN e > el Gyt
—
m,lm! ‘ p=0 P .2 (1+.)p m
(10)

The series converge for large enough real z



where the double conjugation gives us the correct closure from below on t + i...
forte j1.Nearz= jliji., _
x q:! n
1(2) = j an il 2z+1+i.) 2)

In both cases an, is given by the recurrence relation [10]

ap=a; =1 — 1

ax = _ a i > iaja - @)
k (k+1)a1 kil l L, idk+1ji

The derivation of these series from the results of [10] is straightforward, except

for the use of = Z. We here verify that this construction, which is one of a family
of transformations modelled on some used by G.K. Batchelor, gives us the correct
closure. We know that ! (t+i..1) = Wg(jeb) whilst '(t+i.%) =W4(je'), and
!‘t i i.7) = Wo(jet) whilst I(tji.T)=W;i(je"). Puttingz=t+i." in
2(z+1ji.)gives 2(t+1+it0*), fort.. jl. Ift+1 , O then we have
no branch cut to cross | this series will be continuous, therefore, along the line
t+1+i., 1, jl. Ift+1 <0, weareonthebranchcut t+1+i¢0"ist+1+it0¥,
and arg  2(t+1+it0%) = j..=2. Therefore arg Iu2(t+ 1+i0t01) = +.=2,

and this means that the series (2) can be written

X
'@=i an(®)"

n.0

and by inspection of the signs of the series for W, 1(i§% and hence W.;(jet)
just above the branch cut, this is correct. [Here % = = j2(t+1) > 0.] Next,
consider z= j1+i..'. A similar argument leads to the conclusion

>
1(2)=i an(i)"
n,0

which is the series for Wo(jet) for t... j1, because its signs alternate. Consid-
erationof z=tji."andtji.f gives, fort+1<0,

P .
'@ =i -0 an(i®W)"z=tjii.”
=i nooank z=tji.l
and continuity if t+1 , 0.

g——
Remark. The use of (z j a) to represent a square root function with a closure
difierent from the CCC closure, as explained by Kahan, is a useful tool in a
computer algebra setting. However, it relies on the designers to be sophisticated
enough to provide symbolic means of representing (and not over-simpIiB/ing)

these series, and the users to be sophisticated enough to know that = Z & ' z on
the branch cut.




3 Interpolating Wy (z)

Finally, we interpret equation (3) as an interpolation scheme for Wy (z). We note
that k need not be an integer in that equation; the geometric interpretation is
precisely that of a circular cylinder cutting the Riemann surface for W. Note
also that k = 0 and k = j1 are special, and not interpolated by this scheme.

We deduce that W (z) is, in some sense, analytic in k, except if j exp(il) =
z<0andk=0ork=jl.

dWg(z) _d ' .
K —d—k.(lnz+2...|k)
— 0 I(Inz + 2..ik)

¥ nz +2.ik)

By the analytic properties of !, this derivative is not continuous on
iexp(il)=z<O0atk



the same point, even though these series were all introduced in the same
paper [4]. We think that this is because the series are deflned piecewise:
for W;1 and W,



.., this then gives us a negative imaginary part on the order of roundofi in
the result of the call to exp. This is all explainable in terms of the Maple
model of oating-point arithmetic, but it’s a disaster nonetheless | one made
visible by the next step, the computation of Wo(x j i¢"), which is on the
wrong side of the branch cut. The numerical value of Wo(x j i¢"™) is not
at all close to the value of Wo(x +i¢"), and this discontinuity is spurious.
The I function is continuous at this point. So: we should have a separate
routine for the numerical evaluation of ! that guarantees that we get conti-
nuity (where ! is continuous), because the deflnition combines discontinuous
functions in such a way that their discontinuities (mostly) cancel.

There are other advantages to using the Wright I function directly.

1. In addition to being single-valued, ! is continuous (indeed analytic) for all z
not on the two half-lines z =t 8i.. for t « j1. It is discontinuous across
these lines.

2. The Wright ! function has a st



2. Discontinuity (along the branch cuts) is especially visible, and nontrivial, in
this function. Therefore it will make a good test case for reasoning about
complex-valued expressions.

3. The methods used to prove properties of 1 are essentially old-fashioned
mathematics, not commonly seen in standard curricula, and may poten-
tially be automated. This is in the spirit of [3] and represents a potentially
interesting direction for future research.
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