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2 Graphs and special values

A graph of !(z) for real z can be produced easily in Maple by the command
plot([y+ln(y),y,y=0.001..2]);. A section of the Riemann surface for !(z)
can be plotted by the following commands:

omega := mu + I*nu;
x := evalc(Re(omega+ln(omega)));
y := evalc(Im(omega+ln(omega)));
plot3d( [x,y,mu], mu=-4..2, nu=-4..4,

colour=black, axes=BOXED,



In addition to this basic point, we here present new branch point series (with
the correct closure), new asymptotic series (from the equivalent series for the
Lambert W function), and new proofs of the analytic properties of !(z), using
properties of the unwinding number.
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Fig. 1. The z-plane, showing the slit (equivalently, branch cut) we call the \doubling
line" (above) and its \re°ection", across each of which the Wright ! function is discon-
tinuous. Along both slits, the closure (indicated by short lines extending down from
the slits) is taken from below|clockwise around the branch points|to agree with the
closure of the unwinding number.

We here summarize some properties of !, proved in [9]. First, equation (2) has
a unique solution, !(z), for all z 2 C except on the line LD deflned by z = t§ i…
for t • ¡1. When z is on LD, the equation has precisely two solutions, these
being !(z) and !(z¡2…i); we therefore call LD the \doubling line". See Figure 1
and Figure 2. On the re°ection of the doubling line, namely, the line deflned by
z = t ¡ i…, with t • ¡1, equation (2) has no solution at all2. Second, ! is an
analytic function of z except on the doubling line and its re°ection z = t ¡ i…
for t • ¡1, where !(z) is discontinuous. This immediately gives the following.
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Theorem: For all z 2 C and integers k,

Wk(z) = !(lnk(z)); (3)

where lnk(z) = ln z + 2…ik. [This logarithmic notation is discussed further in a
later section.]
Proof. This holds at least provided z is not in the interval ¡ exp(¡1) • z < 0
and k = ¡1, which is the image in the domain of W of the critical doubling line
(and also the image of its re°ection). If z is in the interval ¡ exp(¡1) • z < 0, and
k = ¡1, then we have instead that W0(z) = !(ln jzj+i…) since K(ln jzj+i…) = 0,
and that W¡1(z) = !(ln jzj ¡ i…) since K(ln jzj ¡ i…) = ¡1. Phrasing this the
other way, we have

W0(z) = !(ln z)
and

W¡1(z) = !(ln z ¡ 2…i) :
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Fig. 2. The !-plane, showing the images of doubling slit and its re°ection. The negative
real !-axis is not, per se, a branch cut (this is the range of the function) but it is a
branch cut of ! + ln !, which is why that expression is not exactly the inverse function
for !.



2.2 Properties of ω

We group the properties into analytic properties and algebraic properties.

Analytic properties Theorems and lemmas:

(i) !(z) is single-valued
(ii) ! : C ! C is onto C n f0g.

(ii)(a) Except at z = ¡1 § i…, where !(z) = ¡1, ! : C ! C is injective; hence !¡1

exists uniquely except at 0 and ¡1.
(iii) See Figure 2.

!¡1(y) =

8
<
:

y + ln(y) ¡ 2…i ¡1 < y < ¡1
¡1 § i… y = ¡1
y + ln(y) otherwise:

(iv) (a) ! is continuous (in fact analytic) except at z = t § i… for t • ¡1.
(b) For z = t § i… and t • ¡



(v) (a) WK(z)(ez)eWK(z)(ez) = ez = !(z)e!(z) by deflnition. Taking logs,
ln(!e!) = ln ez, or ! + ln ! ¡ 2…iK(! + ln !) = z ¡ 2…iK(z). Therefore,
! + ln ! = z () K(! + ln !) = K(z).

(v) (b) K(WK(z)(ez) + ln WK(z)(ez)) = K(z). K(a) can change only when a =
t + (2k + 1)… for k 2 Z, or when a is itself discontinuous. We distinguish two
cases, therefore:
(1) WK(z)(ez)+ln WK(z)(ez) can be discontinuous at discontinuities of K(z),

namely z = t + (2k + 1)… for k 2 Z, or when WK(z)(ez) < 0. We ignore
discontinuities of K(z) for the moment. WK(z)(ez) < 0 only when (i)
K(z) = 0 and ez < 0 () z = t + i…, t • ¡1, or (ii) K(z) = ¡1 and
ez < 0 () z = t ¡ i…, t • ¡1. Both (i) and (ii) are discontinuities of
K(z) anyway.

(2) K(!(z)+ln !(z)) can be discontinuous when !+ln ! = t+(2k+1)…i =)
!e! = ¡et () !(z) µ an image of R¡ under W . Therefore z µ a pre-
image of R¡ under ez.

But this is just z = t + (2k + 1)…i, which is a place of discontinuity of K(z).
Note that K is integral-valued. Therefore, if !(z) is such that K(!(z) +
ln(!(z))) = K(z) for any z in a strip (2k ¡ 1)… < Imz • (2k + 1)…, where
! + ln(!) is continuous, then we have K(!(z) + ln !(z)) = K(z) everywhere
in that strip. Let us choose k 2 Z, and look at the pre-image of ! = 2k…i.
Then ! + ln ! = 2k…i + ln(2k…) + i…=2 and hence K(! + ln !) = k. Since
! = WK(z)(ez) we have !e! = ez and 2k…i ¢ e2k…i = ez () ez = 2k…i;
moreover 2k…i 2 range WK(z), and therefore K(z) = k. Therefore

z = ln(2k…i) + 2k…i

= ! + ln !:

This establishes that if !(z) = WK(z)(ez), then ! + ln ! = z except possibly
on the edges of the strips z = t+(2k+1)…i. Now we have K(!(z)+ln(!(z))) =
K(z) if (2k ¡ 1)… < Im(z) < (2k + 1)…, and hence ! + ln ! = z. Note
that !(z) = WK(z)(ez) is continuous from below as Im(z) ! (2k + 1)…¡.
Therefore, provided that !(z) 62 R¡, !(z) + ln(!(z)) will be continuous
as Im(z) ! (2k + 1)…¡. Therefore, since Im(!(z) + ln !(z)) = Im(z) for
(2k ¡ 1)… < Im(z) < (2k + 1)…, we have K(! + ln !) = K(z) even if Im(z) =
(2k + 1)… by continuity:

lim
Im(z)!(2k+1)…−

K(!(z) + ln !(z))

= lim
Im(z)!(2k+1)…−

K(z) :

Therefore K(!(z) + ln !(z)) = K(z) unless !(z) < 0, and Im(z) = ¡i….
(vi) This now follows immediately.



2.4 Corollary

Deflne z(k; µ) = x + i ¢ (2k + µ)…. Then z(k + 1; ¡1) = z(k; 1) since x + i ¢ (2k +
2 ¡ 1)… = x + i ¢ (2k + 1)…, since K(x + i ¢ (2k + µ)…) = k for ¡1 < µ • 1. Since

Wk(ex+i(2k+µ)…) = Wk(ex+i…µ) = Wk(ex(cos …µ + i sin …µ)) ;

we have Wk(ex+i…µ) ! Wk(¡ex + i ¢ 0+) as µ ! 1¡, and

lim
µ!¡1+

WK(z(k+1;µ))(ez(k+1;µ)) = lim
µ!¡1+

Wk+1(ex+i(2k+2+µ)…)

since K(x+i¢(2k+2+µ)…



{ Series about z = a, where a = !a +ln !a: the following (computed by Maple)
is the beginning of the series for ! which contains second order Eulerian
numbers.

!a +
!a

1 + !a
(z ¡ a) +

1
2!

!a

(1 + !a)3
(z ¡ a)2

¡ 1
3!

!a (2 !a ¡ 1)
(1 + !a)5

(z ¡ a)3 +
1
4!

!a (6 !a
2 ¡ 8 !a + 1)

(1 + !a)7
(z ¡ a)4

¡ 1
5!

!a (24 !a
3 ¡ 58 !a

2 + 22 !a ¡ 1)
(1 + !a)9

(z ¡ a)5

+
1
6!

!a (120 !a
4 ¡ 444 !a

3 + 328 !a
2 ¡ 52 !a + 1)

(1 + !a)11
(z ¡ a)6

+O((z ¡ a)7)
The general term is [6]:

!(z) =
X

n‚0

qn(!a)
(1 + !a)2n¡1

(z ¡ a)n

n!
(4)

where

qn(w) =
n¡1X

k=0

¿¿
n ¡ 1

k

ÀÀ
(¡1)kwk+1 : (5)

is deflned in terms of second order Eulerian numbers.
{ Series about 1: This series was originally due to de Bruijn, and Comtet

identifled the coe–cients as Stirling numbers.

! » z ¡ ln(z) +
ln(z)

z
+

1
2

ln(z) (ln(z) ¡ 2)
z2

+
1
6

ln(z) (¡9 ln(z) + 6 + 2 ln(z)2)
z3

+
1
12

ln(z) (3 ln(z)3 ¡ 22 ln(z)2 + 36 ln(z) ¡ 12)
z4

+

1
60

ln(z)(¡125 ln(z)3 + 350 ln(z)2 + 12 ln(z)4

¡ 300 ln(z) + 60)=z5 + O(
1
z6

)

The general term is (translating from the Lambert W results of [2, 7]) !(z) =

z ¡ ln z +
X

‘‚0

X

m‚0

c‘m
lnm z

z‘+m
(6)

where c‘m = (¡1)‘
h

‘+m
‘+1

i
=m



can be rearranged in several ways, following [9] and [6]: !(z) =

z ¡ ln z +
X

n‚1

(¡1)n

zn

nX
m=1

(¡1)m

m!

•
n

n ¡ m + 1

‚
lnm z : (7)

Using a new variable ‡ = z=(1 + z), we get !(z) =

z ¡ ln z +
X

m‚1

lnm z

m!zm

m¡1X
p=0

(¡1)p+m¡1‡p+m

‰
p + m ¡ 1

p

¾

‚2

(8)

where the numbers in curly braces are 2-associated Stirling numbers. Using
L¿ = ln(1 ¡ ¿) = ln(1 ¡ ln z=z) and · = ¾=(1 ¡ ¿) = 1=(z(1 ¡ ln z=z)) =
1=(z ¡ ln z), series (83) and (84) from [6] become

!(z) = z ¡ ln z ¡ L¿

+
X

n‚1

(¡·)n
nX

m=1

(¡1)m

•
n

n ¡ m + 1

‚
Lm

¿

m!
(9)

and

!(z) = z ¡ ln z ¡ L¿

+
X

m‚1

1
m!

Lm
¿ ·m

m¡1X
p=0

‰
p + m ¡ 1

p

¾

‚2

(¡1)p+m¡1

(1 + ·)p+m
:

(10)

The series converge for large enough real z



where the double conjugation gives us the correct closure from below on t + i…
for t • ¡1. Near z = ¡1 ¡ i…,

!(z) = ¡
X

n‚0

an

ˆ
¡i

q
2(z + 1 + i…)

!n

: (2)

In both cases an is given by the recurrence relation [10]

a0 = a1 = 1

ak =
1

(k + 1)a1

ˆ
ak¡1 ¡

k¡1X

i=2

iaiak+1¡i

!
: (3)

The derivation of these series from the results of [10] is straightforward, except
for the use of

p
z. We here verify that this construction, which is one of a family

of transformations modelled on some used by G.K. Batchelor, gives us the correct
closure. We know that !(t + i…¡) = W0(¡et) whilst !(t + i…+) = W1(¡et), and
!(t ¡ i…+) = W0(¡et) whilst !(t ¡ i…¡) = W¡1(¡et). Putting z = t + i…+ inq

2(z + 1 ¡ i…) gives
q

2(t + 1 + i ¢ 0+), for t … ¡1. If t + 1 ‚ 0 then we have
no branch cut to cross|this series will be continuous, therefore, along the line
t+1+i…, t ‚ ¡1. If t+1 < 0, we are on the branch cut. t + 1 + i ¢ 0+ is t+1+i¢0¡,
and arg

p
2(t + 1 + i ¢ 0¡) = ¡…=2. Therefore arg

p
2(t + 1 + i ¢ 0¡) = +…=2,

and this means that the series (2) can be written

!(z) = ¡
X

n‚0

an(‰)n

and by inspection of the signs of the series for W¡1(¡et) and hence W+1(¡et)
just above the branch cut, this is correct. [Here ‰ =

p
¡2(t + 1) > 0.] Next,

consider z = ¡1 + i…¡. A similar argument leads to the conclusion

!(z) = ¡
X

n‚0

an(¡‰)n

which is the series for W0(¡et) for t … ¡1, because its signs alternate. Consid-
eration of z = t ¡ i…+ and t ¡ i…¡ gives, for t + 1 < 0,

!(z) = ¡ P
n‚0 an(¡‰)n z = t ¡ i…+

= ¡ P
n‚0 an‰n z = t ¡ i…¡

and continuity if t + 1 ‚ 0.

Remark. The use of
q

(z ¡ a) to represent a square root function with a closure
difierent from the CCC closure, as explained by Kahan, is a useful tool in a
computer algebra setting. However, it relies on the designers to be sophisticated
enough to provide symbolic means of representing (and not over-simplifying)
these series, and the users to be sophisticated enough to know that

p
z 6= p

z on
the branch cut.



3 Interpolating Wk(z)

Finally, we interpret equation (3) as an interpolation scheme for Wk(z). We note
that k need not be an integer in that equation; the geometric interpretation is
precisely that of a circular cylinder cutting the Riemann surface for W . Note
also that k = 0 and k = ¡1 are special, and not interpolated by this scheme.

We deduce that Wk(z) is, in some sense, analytic in k, except if ¡ exp(¡1) •
z < 0 and k = 0 or k = ¡1.

dWk(z)
dk

=
d

dk
!(ln z + 2…ik)

= 2…i
!(ln z + 2…ik)

1 + !(ln z + 2…ik)
:

By the analytic properties of !, this derivative is not continuous on
¡ exp(¡1) • z < 0 at k



the same point, even though these series were all introduced in the same
paper [4]. We think that this is because the series are deflned piecewise:
for W¡1 and W1



…; this then gives us a negative imaginary part on the order of roundofi in
the result of the call to exp. This is all explainable in terms of the Maple
model of °oating-point arithmetic, but it’s a disaster nonetheless|one made
visible by the next step, the computation of W0(x ¡ i ¢ "), which is on the
wrong side of the branch cut. The numerical value of W0(x ¡ i ¢ ") is not
at all close to the value of W0(x + i ¢ "), and this discontinuity is spurious.
The ! function is continuous at this point. So: we should have a separate
routine for the numerical evaluation of ! that guarantees that we get conti-
nuity (where ! is continuous), because the deflnition combines discontinuous
functions in such a way that their discontinuities (mostly) cancel.

There are other advantages to using the Wright ! function directly.

1. In addition to being single-valued, ! is continuous (indeed analytic) for all z
not on the two half-lines z = t § i… for t • ¡1. It is discontinuous across
these lines.

2. The Wright ! function has a st



2. Discontinuity (along the branch cuts) is especially visible, and nontrivial, in
this function. Therefore it will make a good test case for reasoning about
complex-valued expressions.

3. The methods used to prove properties of ! are essentially old-fashioned
mathematics, not commonly seen in standard curricula, and may poten-
tially be automated. This is in the spirit of [3] and represents a potentially
interesting direction for future research.
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