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It is natural to ask the question in this form, because this is the sort of equation contained in all the algebra
textbooks, and all the reference books. The trouble is that when a group of people start to debate such
an equation, every person is correct. One person will give a deflnition that makes the statement true, and
another will give a deflnition that makes it false, but as long as each system of deflnitions and implications
is consistent, both parties are correct. As a result, the unpublished discussions we have witnessed often fall
into predictable patterns. Each person states \When I was an undergraduate in university X, I was always
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2 Cardano solution formulae



Roots and branches Formally reviewed communication

In[1]= Sqrt[-2]
Out[1]= i Sqrt[2]
In[2]=N[Out[1]]
Out[2]= 0.+1.41421 i

| Mathematica, Personal communication

‘When I use a word,’ Humpty Dumpty said in rather a scornful tone, ‘it means just what I
choose it to mean | neither more nor less.’

‘The question is,’ said Alice, ‘whether you can make words mean difierent things.’

‘The question is,’ said Humpty Dumpty, ‘which is to be master | that’s all.’
| Lewis Carroll, Through the looking glass

It is a mistake to think that square root and cube root do not need to be deflned. As an example
of how easily confusion can enter, we consider the use of the symbol

√
in Numerical Recipes §5.6 [21],

where there are uncommented, but implied, changes in the meaning of notation. Thus we flrst read that
ax2 + bx + c = 0 has the solution

x =
−b±√b2 − 4ac

2a
:

The fact that the authors write ± implies that
√

has a deflnite sign. However, after their equation (5.6.6),
we read that \the sign of the square root should be chosen so as to make

Re
‡

b
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3.3 Principal value: n
√

z

This notation is used for the single-valued, principal-branch function [10], deflned by

n
√

z = |z|1=n exp
‡arg z

n

·
: (14)

Here, arg z ∈ (−…; …], and we allow the default case
√

z = 2
√

z. (Questions regarding branch-cut placement
and closure are more examples of interesting red herrings [10, 22].)
Example: 3

√−8 = 1 + i
√

3.

3.4 Real branch: surd(z; n)

Maple accommodates users who want the cube root of a negative real to be a negative real by deflning
a separate function called surd. We adopt that notation here. If x ∈ R , then surd(x; 3) = sgn(x) 3

p
|x|,

where the cube root is real. More generally, if z ∈ C and n ∈ Z, then surd(z; n
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5 Commentary on the solutions

Some observations can now be made about the above calculations, keeping in mind our primary focus: the
question of which of the deflnitions §3.1 { §3.4 is best for a computer algebra system.

5.1 Using sets of values

From the point of view of implementing this approach in a CAS, the manipulations of the lists of values
are not di–cult. An obvious drawback is one of e–ciency. Although we knew from the start that only
3 solutions existed, we still ended up testing 21 candidate solutions. A potential drawback that is not
illustrated by the example concerns the selection of correct answers. The correct solutions were easily
identifled here, but identifying zero from °oating-point data can potentially be di–cult.

The numerical example also illustrates the di–culties inherent in trying to implement this deflnition
symbolically. We see that the sets for s
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6 Riemann surfaces

There is at least one other way of computing with fractional powers, but we have not discussed it here. In
conversations at conferences, one sometimes hears the assertion that Riemann surfaces should be used for
fractional power computations. We agree that Riemann surfaces form a beautiful theory, and that they
are an attractive way to think about multivalued functions. However, what has not been demonstrated,
to our knowledge, is the fact that they can be computational. Perhaps some reader can contribute a
demonstration of the way in which the theory of Riemann surfaces can be used to solve the example
problem discussed here.

7 Concluding remarks

We think that we have demonstrated that principal-valued functions are the best ones for a computer
algebra system, and indeed for most mathematical computations, but we hope that this is not the end of
the discussion. It would be useful, for example, to have more problems with which the difierent approaches
could be compared. For the present example problem, principal-value functions gave the best solution,
but we are open to the possibility that there are other problems for which this conclusion is not correct.
Certainly the surd function was introduced into Maple so that users could use it, not to prove that it
was useless. This is a moot point, however, since we must ask how many mathematicians, even Maple
users, know of the function. We would like to hear about other system perspectives on the problem. Did
discussions similar to this one take place during the development of other systems, such as (in chronological
order) Macsyma, Derive and Mathematica? How should these ideas be propagated to the rest of the
mathematical world?

We see a connection between the present discussion and Buchberger’s advocacy of mathematical re-
search in the computer age [6, 7]. In both cases, the algorithmic aspect of mathematics, whether old
mathematics or new, is being raised to a higher level | let us call it the algorismation of mathematics1.

We close with a few memories of the Maple discussions and the reasons advanced for preferring the
multivalued interpretation of functions.

• Stupid Maple. Some developers were concerned that if Maple refused to honour a request to expand
ln(AB) into ln A + ln B, then the users would dismiss the product as being ignorant.

• Ugly Maple. Some developers pined for the good old days when they could enjoy the simplicity of
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• Unresponsive Maple. Sometimes one wants to force a transformation such as ln(AB) → ln A + ln B,
because it might prove to be correct later. Equation solving is a typical situation. Sometimes one
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Appendix: Properties of Cardano formulae

Although the Cardano formulae were introduced as an example for testing multivalued deflnitions, and
were not the main subject of this article, several reviewers were stimulated to re-examine the properties
of (2){(10). Since, to some extent, the main discussion requires that the reader have confldence in the
formulae, we record some of the reviewers’ comments and questions here.
The formulae look the same. One of the problems of working with principal-valued functions in the complex
plane is the need to ‘unlearn’ some of our re°exive use of transformations. As the numerical examples show,
the forms are not equivalent.
The formulae are discontinuous. Assuming principal-valued functions, one flnds that the Cardano expres-
sions are discontinuous, even though the roots of the polynomial vary continuously with the coe–cients.
The observation is correct, but it does not invalidate the correctness of the expressions.
Are the expressions always correct? For the purposes of this paper, we are accepting that Maple and
Mathematica are using expressions that are correct for principal-branch functions. A full discussion of
the correctness and the merits of the difierent forms of the Cardano formulae must wait for a separate
paper.
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