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[Landau92b], reasons are given for preferring the left-hand side of (4.2). However, we
assume that in general users would want denesting to be discovered*.

Another reason for denesting is reliable simplification. For both people and
computers, there is a danger that the result of a mathematical simplification will
depend upon the order in which rules are applied. For example, the simplification

of \/(1—+/2)2 can proceed two ways. The first way is called ‘top-down’ by those
who think of the expression as a tree, and ‘outside to middle’ by those who look
at the printed form. Following this procedure, one applies first the rule va? = |z|

for any real z, and obtains /(1 —1/2)2 = /2 — 1. The other way is ‘bottom-up’ or
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but in fact the quadratic can be factored as (z+ 1 — \/5)(1‘ +54+ \/5) Therefore the
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4.5.1 Square root of a three-term sum

Equation (4.5) can be generalized to the pattern

vaZ+2ab+ b2 =|a+b|, (4.8)

where either a or b is a surd other than a square root (i.e., so that the corresponding
squared term is still a surd)



66 C8MPUTER ALGEBRA SYSTEMS: A PRACTICAL GUIDE

We call this the square-root-nesting equation. S



SIMPLIFYING SQUARE R®8TS 8F SQUARE R®8TS BY DENESTING 67

is how the method fails. After all, the majority of nested surds do not denest, and
so any implementation must know when to give up. Answering this question turns
out to be as difficult as finding the successful part of the algorithm®. It might seem
frustrating having to spend a lot of time deciding when the system will not succeed, but
this decidedly less glamorous activity is essential to the smooth operation of a CAS.

Consider, therefore, an example slightly altered from (4.1): /4 + 21/2. Substituting
X =4 and Y = 2v/2 into (4.12) gives

\/4+-N§:\/2+x/
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have so far explored. Therefore, adding new cases must be done explicitly, and the code
has little hope of working for examples slightly different from those it was designed
for. For example, if this code were implemented and a user challenged the system with
an example the developer had not considered, like

\/5 +2v6 4+ 5V7 + 2V/700 4 2v/1575 = V2 + V3 + V175 ,

then there is no hope that the system could surprise the programmer by rising to
the occasion, because the square root contains 5 terms, and that case is not treated”.
As users report problems that the system ‘cannot do’, the developer is faced with
constantly revisiting the code. This will always happen to some extent, of course, but
it is particularly inevitable with this style of programming.

The above code also contains coding that repeats itself. This suggests that a more
flexible approach will be a recursive one, meaning one in which the routine will be
structured to call itself. The difficulty with a recursive approach is that we must be
very careful to have a way of stopping it®. We want to abandon the process whenever
it looks as though we are no longer making progress. The easiest way to do this is to
have a numerical measure of the degree of nesting of a radical, and stop the recursion
whenever this measure increases.

4.7 A measure of the degree of nesting of a radical

We now describe the function that is used to control the recursive denesting of radicals.
One measure of the nesting of a radical is given in [Landau92b]; the one given here is
similar in spirit. Suppose we have a radical z. We wish to associate with it an integer
N (z) that is its nesting level. Our rules are:

4.7.1 If z 1s a number

A number here means an integer, but more generally it includes rational numbers also.
(More abstractly, a member of the base number field.) For a number z, set N (z) = 1.
Some measures of nesting start counting at 0, but the starting point is arbitrary. Any
undefined symbols are also given N = 1.

4.7.2  If x 1s an nth root of something
If 2 has the form {/y, with n > 1, then we assign N'({/y) = 1 + N (y). This is the

fundamental feature that we wish to capture with our measure, so if we think of the
radical being built up from other radicals, then every time we take another root we
increase the measure. Thus N(\/E) = 1+ N(2) = 2. Notice that the size of n is not
used. Therefore the simplification V4 = 2 is visible to this measure (N decreases from
2 to 1), but the simplification V4 =+/2is not, because only the strength of the root is

7 As a case in point, we were agreeably surprised ourselves when Derive succeeded on this
one.

8 A system experiencing uncontrolled recursion is said to suffer from recussion — a special
form of concussion. Its name reminds us that the developer often starts cussin’ all over again.

From Cormputer Algebra Systerus: A Practival Guide, M.J. Wester, Ed., Wiley 1999.
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reduced. This 1s acceptable, since nesting is what we are trying to measure, but other
applications might require a measure in which n is included somehow.

4.7.8 If z 1s a product

From the point of view of nesting, V2v/3 is no more complicated than V6. More
generally, given radicals ¥/z and /%y, there are integers a,p such that {/x ¢/y = ¥/
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4.9 Testing

All CAS developers have test suites that they run their systems on. These suites must
contain problems for which the system is expected to obtain the correct simplification,
and problems for which the system should correctly find no simplification. Derive has
one such suite specifically for denesting problems. It contains all the examples given
in this chapter and many others. We challenge readers to use their dexterity and
sinisterity to invent some interesting examples to add to our suite. As a starting
point, a specific case for which we have not given an example is a square root in which
the ordering of the terms is important to the denesting.

An ideal test suite will have at least one example to activate each path through the
algorithms of the system. As this simple denesting code illustrates, there are always
many places where quantities are tested and execution paths switched. Compiling
a thorough test suite even for this small part of a complete system is lengthy and
difficult, so it is no wonder that over many years of use, users find examples that
activate previously unexercised paths in the code. The test suites of all the CAS
contain many examples contributed, often inadvertently, by (we hope temporarily)
disgruntled users.

From Cormputer Algebra Systerus: A Pravtival Guide, M.J. Wester, Ed., Wiley 1999.
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