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The paper presents four rectifying transformations that can be applied to the integra-
tion of a real rational expression of trigonometric functions. Integration is with respect
to a real variable. The transformations remove, from the real line, discontinuities and
singularities that would otherwise appear. If the integration is with respect to a complex
variable, the transformations remain valid. In that case, they move singularities from
the real line to elsewhere in the complex plane.

1. Introduction
Let ¢, ¢ € R[z,y] be polynomials over R, the field of real numbers. A rational trigono-
metric function over R is a function of the form

T(sin 2, cos z) = LLEN 20052

(1.1)

The problem considered here is the integration of such a function with respect to a real

é(sin z, cos z)
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R(z) is the real part of z. The integrand has simple poles when cos z = g, at the points

z = +iIn2. Corresponding logarithmic singularities must therefore be present in the
expression on the right-hand side of (1.2). This is verified by observing that arctangent has
logarithmic singularities at +¢ and that 3 tan %(:l:iln 2) = =i. Also, since it is standard
for arctangent to have branch cuts from +i along the lines {+iy,y € [1,00)}, and since
3tan%(:l:iy) = #3itanh %y, the right side of (1.2) has branch cuts along the set of
lines Ly = {#iy,y > In2}. These branch cuts, being associated with the logarithmic
singularities, are unavoidable. However, there are other singularities and branch cuts
present in the same expression. Since 3 tan %(ﬂ' + iy) = 3icoth %y, the right-hand side of
(1.2) has singularities at +7 and branch cuts extending from these along the set of lines
Ly = {+7+1iy,y € R}. Figure 1 shows this information graphically; the singularities are
indicated by triangles and diamonds, the branch cuts L; are shown using heavy wavy
lines, and the branch cuts Ly are shown using hatched lines. The figure uses periodicity
to extend beyond the interval discussed above.
Now consider the equation

- 3dz sin z
Il(z):/m:z—}-?arctanm . (13)
The right side of this equation has singularities at the points z = +¢1n 2 and branch cuts
along the lines L1, but it does not have singularities at £, nor branch cuts along L.
Therefore, if the integral were to be evaluated along a contour that cut one or more lines
in Ly, the evaluation would be more efficient and reliable using (1.3). For contours along
the real axis, (1.3) satisfies the definition of an integral on the real domain of maximum
extent (Jeffrey 1993). The present paper gives an algorithm for obtaining (1.3) in place
of (1.2).

Other examples show different forms of the problem. Consider

12(z):/ (cosz+2sinz + 1) dz

cos2z —2sinzcosz 4+ 2sinz + 3

= arctan(tan2 %z + tan %z) . (1.4)

In the complex plane (again using periodicity to simplify the discussion), the integrand

has poles at z = 2arctan (—1 + 1+/1 & 4i). The right-hand side of (1.4) hasd glarih-
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Definition: Let D C C be a domain in the complex plane. Let a function f : D — C be
defined and integrable everywhere on ID except on a set of isolated singular points S¢. Let
F,G : D — C be primitives of f, which is to say, their derivatives satisfy F' = G’ = f,
and further let them have sets of singular points Sg and S respectively. Necessarily, we
have Sp,S¢ O S;. A transformation 7 is a rectifying transformation on ID if it has the
properties that 7(F) = G and Sg C Sp ; if S¢ = Sp then the transformation is neutral,
and if S D Sp then the transformation is exacerbating.

Ezample: Tt was shown by Jeffrey (1993) that given functions A, B : R = R, and the
integrand f = A’/A+ B’/ B, the transformation 7 (In A+In B) = In(AB) can be rectifying
or neutral on R. In the particular case in which A = sinz and B = cscx — cotz, and
thus f = cot 1z, it is rectifying. In the case A = 1/2 and B = 1/(1 + ), it is neutral.
By reversing the roles of F' and G, a transformation that is neutral or exacerbating is
obtained.

Remark: Typically, the transformation 7 will be defined only on a specific and narrow
class of functions.

The intention is that a rectifying transformation is used within an integration pro-
cedure after a primitive, or antiderivative, has been computed for a given integrand.
The transformation then finds an equivalent antiderivative with better global properties.
Therefore, before a description is given of the new transformations, the algorithm begins
by reviewing an existing method for obtaining antiderivatives of trigonometric functions.

THEOREM 2.1. Let ¢,v¢ € Q[z,y] be polynomials, where Q denotes the field of rational
numbers, and let T'(sin z, cos z) = ¢(sin z,cos z)/(sin z,cos z) be a e
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where the v; are polynomials in u, possibly with complex coefficients. Let the functions
v; be ordered so that those with purely real coefficients are numbered from 1 to m,
for some m; these logarithms are then left unchanged. For ¢ > m, the logarithms con-
taining coefficients with nonzero imaginary parts are converted to arctangents using the
rectifying transformation due to Rioboo (1991) that is described by Bronstein (1996)
and also outlined by Geddes et al. (1992) in their exercise 11.18. By using the identity
arctan(—f) = — arctan f, one can ensure that the leading coefficient of each P; is pos-

itive, albeit, determining the sign of the leading coefficient might require considerable
effort. O

Remark: The rectifying transformations that are now described are independent of theo-
rem 2.1, but they are most usefully applied to expressions such as (2.1), whether obtained
by the method given in the proof, or some other. In particular, some CAS may obtain
(2.2) with a partial fraction computation. Also, the theorem is stated for functions over
@, but in many cases, a CAS will be able to integrate functions defined over extensions

of (.

LEMMA 2.1.1. For a polynomial P € R[u] and u as above, define the transformation &
by

EP(z) = E[P(u)] = (cos 22)%8F P(tan iz) . (2.3)
Then EP(2nm + 7) is finite and EP(z) has the same zeros on C as P(tan %z)
Proon. By periodicity, only the domain —7 < 3z < 7 need be considered. Let the
polynomial P(u) = > " p;u’, where m = deg P. Then £P(n) = pm # 0. Further,

P(tan%ﬂ') # 0 because it is unbounded, and so neither P nor £P is zero at z = .
Since z # m implies cos %z # 0, then P(tan %z) =0 < &P(z)=0.0

In terms of this transformation, we now give the rectifying transformations that are
the main results of this paper. First the logarithmic terms in (2.1) are considered.

THEOREM 2.2. For monic
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from 1it.

(a—Nu+b
1+ au? + bu

b— K+ (a—1— Kbu— Kau?
14+ Kb+ (Ka— K +bu+au®’

z z
o) + arctan — arctan K = o) + arctan
A value of K must now be found that ensures that the denominator is positive. The
minimum value of the denominator is given by

inf (14 Kb+ (Ka— K +bju+au’) = 1+ Kb~ (Ka — K +b)*/4a ,
ue

and this must be greater than zero. The largest value of the infimum is obtained by setting
K = b(1+a)/(1—a)?, but using this value leads to a more complicated expression than
the one in (2.6). The infimum is also positive for K = b/(1 + a) and using this leads to
(2.6), after using v = sinz/(1 + cos z). U

We finally come to the general odd-degree case. The technique just used, of combining
the arctangent with a constant, can be shown by counter example to fail. Thus the
straightforward generalization would be to try to rectify an odd degree poynomial P(u)
by writing
P—u—K(1+uP)

I+ uP+ K(P—u)’

arctan P(u) — arctan u — arctan K = arctan

Consider, however, the example P = 11—0u3 — 4u. The denominator then becomes equal

to 11—0u4 + 11—0Ku3 — 4u? — 5Ku+ 1. No value of K exists that makes this positive for all

u. For example, the expression is always negative at u = 11—0 — gK + %\/
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3. Implementation and examples

The algorithm is now summarized.

1 The system identifies an integrand as rational trigonometric over R (in variable z
let us say) and tries any preferred simpler evaluation strategies, for example, a sine
or cosine substitution.

2 The system substitutes u = tan %z and passes the resulting rational function to its
integrator. This step can be tried even if the coefficients are in R rather than Q,
because the integrator may succeed.

3 If an expression is returned in the form (2.1), then the algorithm can proceed. If it
is not of this form (for example, it contains complex logarithms or arctangents of
rational functions), then the algorithm fails.

4 For each term matching one of the four patterns, the rectifying transform is applied.
Notice that the application of the transformation does not require any analysis or
knowledge of the whole integral expression, but can be applied immediately upon
recognising the pattern.

5 Any residual terms in u are returned to z.

This algorithm is now applied to the examples given in the introduction and to other
examples. Starting with (1.2), the transformation 73 gives (1.3), by simple substitution
in (2.6). To apply 72
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present at z = m.

/ (Tcosz+ 2sinz+3) dz 3+sinz+cosz (3.3)

- - =1In - .
3cos?z —sinzcosz +4cosz —Hsinz+ 1 cosx —2sinx + 1

The singularity cannot be removed because it is induced by a pole in the integrand.
Even so, the integral is in a form that is more convenient for further analysis than the
original expression. Therefore, a CAS would do well to implement the transformation,
independently of whether the transformation is rectifying. In this regard, it can be noticed
that the transformation is linear in its argument, and even though theorem 2.2 was
stated for a sum of logarithms, the transformation can be applied independently to each
logarithm. Also, the polynomial arguments of the logarithms do not have to be monic,
although again that is how the theorem was stated.
An example of the application of 74 1s

/ (5cos?z+4cosz — 1) dz

31 . 1
z—2tan =z
4cos3z—3cos?z—4cosz —1

2 2)'

= 2arctan(tan

A value of k > —inf(u* — 2u?) = 1 must be selected. Since k cannot equal 1, the obvious
choice is 2. This gives

= z—2arctan —2 arctan

/ (5cos?z +4cosz — 1) dz Tcoszsinz + 3sinz sin z
4cos3z—3cos?z—4cosz—1 5cos?2z+ 2cosz+1 3+cosz

If it 1s possible to choose k£ = 1, this is clearly the best choice, since one of the arctangent
terms is then removed, as the next example shows. We have6'e ¢ ) 1 Znind

i)

8an
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Here the 73 transformation has already been applied. If the substitution u = tan z is used
instead of u = tan %z, only a single arctangent is needed. Within the present scheme, the






