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1 Introduction

Once it is decided that a CAS will evaluate multivalued
functions on their principal branches, questions arise con-
cerning the branch definitions. The first questions con-
cern the standardization of the positions of the branch
cuts. These questions have largely been resolved between
the various algebra systems and the numerical libraries,
although not completely. In contrast to the computer
systems, many mathematical textbooks are much further
behind: for example, many popular textbooks still spec-
ify that the argument of a complex number lies between 0
and 27. We do not intend to discuss these first questions
here, however. Once the positions of the branch cuts have
been fixed, a second set of questions arises concerning the
evaluation of functions on their branch cuts.

In [2], Kahan considered the closure problem from sev-
eral points of view and discussed different possible solu-
tions. One of his proposals was a principle called counter
clockwise continuity (CCC) for the determination of the
closure of the elementary functions. To determine clo-
sure for any branch, one imagines circling the branch
point counterclockwise (anticlockwise in the British hemi-
sphere) and the closure is on the side one arrives at by
this process. Thus, one decides arctan(5i/3) = 17 +1In2
and arcsin(5/4) = 7 — iIn2. This convention has not
been followed by all systems. In particular, DERIVE de-
fines inverse tangent using clockwise continuity (CC), and
therefore obtains arctan(5i/3) = —im + iIln2. There are
many other cases within the current CAS of non-CCC
closures.

Examining the reasoning behind the DERIVE selection
of the closure of arctangent introduces the reasons for
many of the departures from CCC in other systems. If
both arcsine and arctangent are closed CCC, then the
relation between them that is valid over the whole of € is
arctan
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where W is the unwinding number [1]. Another way to

express this uses complex conjugation:
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where Z is the complex conjugate of z. In contrast, if
arctangent is defined as clockwise continuous (CC) the
relation is
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arcsin z = arctan (
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arcsin z = arctan

This last relation is of prime importance within DERIVE,
and overrides the importance of maintaining CCC.

Kahan recognized the importance of algebraic identities
and their dependence upon closure definitions. For this
reason, he also discussed the idea of a signed zero. We
shall discuss both ideas here.

2 Closure by CCC

We start by considering whether CAS should follow Ka-
han in making all their functions CCC. The principles
seem to be as follows.

1. Standards are good. We should like all our arctan-
gents to simplify to the same thing on all systems.

2. CCC looked the best candidate for a standard. Be-
fore settling on CCC, Kahan had reviewed the im-
plementations existing at the time of his article. As
we have noted above, time has not established CCC
as the standard, certainly within CAS, although it
continues to exert a strong influence.

3. The standard allows the closure of new functions to
be determined automatically. It should be noted that
a finite branch cut cannot be CCC at both ends,
unless it has a singularity in the cut. Therefore this
principle will not always apply.

4. Any convention will allow some algebraic relations
and invalidate others. This point has two conse-
quences. First, one should not waste time searching
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Thus we propose that In(—1) simplify to +m¢ instead of
mi. Notice that we are not proposing to return a set of val-
ues, elementary functions do not return sets. Rather, the
value returned can be operated on by mathematical op-
erators the same way numbers can: for example, (+im)?
simplifies to —m2.

The following table gives, for each of the multivalued
elementary functions, the position of the branch cut, in
DERIVE’s implementation. Other CAS may place some
of the branch cuts in different places. For example, the
branch cuts of acoth were recently changed in Maple. The
branch cuts are specified using z = z + iy. The table
also contains for each function a relation that is valid on
the whole complex plane except on the branch cuts, if a
particular value is selected.

Function  Branch cut Symmetry relation
In : r<0,y=0 InZ=Inz
asin : |z]>1,y=0 asinz = asin z
acos : |z]>1,y=0 acos z = acos z2
atan : lyl>1,2=0 atan z* = (atan z)*
acot : lyl>1,2=0 acot z* =

7+ (acot z)*
asec : lz] < 1,y=0 asecZ = asec z
acsc : lz] < 1,y=0 acscz = acsc z
atanh : |z] > 1,y=0 atanhz = atanh 2
acoth : lz] < 1,y=0 acothz = acoth z
asinh : lyl>1,z=0 asinh z* = (asinh z)*
acosh : r<1l,y=0 acoshz = acosh z
asech : z<0,z>1,y=0 asechz = asech z
acsch : lyl< lL,z=0 acsch z* = (acsch z)*

nth root: =< 0,y=0 ()" = 2l
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