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the early 1980s,whenthe programMaple defineda functionthatwasnamedsimply W. An historical
searchgonductedvhile writing anaccountof this function[4], foundwork by the eighteenttcentury
scientist]. H. Lambertthatforeshadwedthe definition of the function; eventhoughhis work did not
actuallydefinethefunction, W wasnamedn his honour The samesearctuncovereda fortuitousrea-
sonfor calling thefunction W, in thatE. M. Wright, a mathematiciarkknown for his bookwith Hardy
onpuremathematicsstudiedthecomplec valuesof thefunction,againwithoutnamingit. Thefunction
is notconnectedvith the Lamberttransformof afunction,which hasbeendefinedindependently13].
Thedefinitionof W is thatit is thefunctionthatsolvesthe equation

weV =z, Q)

wherez is acomplex number This equationalwayshasaninfinite numberof solutions,mostof them
comple, andsoW is amultivaluedfunction. Thedifferentpossiblesolutionsarelabelledby aninteger
variablecalledthe branchof . Thusthe properway to talk aboutthe solutionsof (1) is to saythat
they areWy,(z), for ary k = 0, £1, £2, etc. Thereis alwaysspecialinterestin solutionsthatarepurely
real,andsowe noteimmediatelythatwhenz is arealnumber equation(1) canhave eithertwo real
solutions,in which casethey areWy(z) andW_(z), or it canhave only onereal solution, this being
Wo(z) [with W_1(2) now beingcomple], or norealsolution.Evenif z is real,thebranchestherthan
k = 0,—1 arealwayscomplex. Admittedly, W doesnot yet appeaion ary pocket calculator but it is
known to the computingsystemaViaple Macsymaand Mathematicdin the caseof Mathematicathe
functionis calledProductLog). Thereforeassoonasa problemis solvedin termsof W, numerical
values plots,derivativesandintegralscanbe easilyobtained.

The first physicsproblemto be solved explicitly in termsof W wasonein which the exchange
forcesbetweertwo nucleiwithin thehydrogermolecularion (H;") werecalculated11]; this, however,
is alonganddifficult calculation(andit hasalreadybeenpublishedsoinsteadf describingt, we have
takentwo muchsimplerproblemsfrom standarghysicstextbooks,problemsthatmary studentsneet
in their physicseducationandwe have expressedhe solutionsin termsof W. As mentionedabove,
the physicalcontentdoesnot changepnly the easeof working. An additionalpoint of interestis the
factthatthe electrostati@pplicationhelpsto justify a mathematicatlecisionconcerninghedefinition
of W thatwasoriginally takenentirelyon aesthetigin a mathematicabensejrounds.

2. Wien’s displacement law

The spectraldistribution of black body radiationis a function of the wavelength\ andabsolutetem-

peraturel’, andis describeddy p(A, T'), definedsuchthat p(A, T') d\ is the power emittedin a wave-

lengthinterval dA perunit areafrom a blackbody at absolutedemperaturd’. ThewavelengthAmax at

which p is a maximumobeys Wien’s displacementaw An,.T = b, whereb is Wien'’s displacement

constan{3]. This law wasproposedy Wien in 1893from generatthermodynami@argumentsOnce

Plancks spectradistribution law is known, Wien'’s law canbe deducedandthevalueof b determined.
The PlanckSpectraldistribution law is

8rhe/\°

p(AT) =
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This equationhasthetrivial solutionz = 0 andthe nontrivial one
=5+ Wo(—5e™?).
ThereforewWien's law is obtainedwith anew expressiorfor Wien'’s displacementonstant:

he/k

b= ————
54+ Wo(—5e9)

=2.893 x 107° mK. ()
In the past,one would have obtainedthe numericalvalue of the law by programminga Newton-
Raphsoror similar solver on equation(2); now one canstartup a computerpackageand obtainthe
valuewithout programming.Time is saved not only becauseo programmings neededput alsobe-
causehe systemdevelopershave implementedhe fastesendmostaccuratenethodof evaluation.

3. Capacitor fields and conformal mapping

The equipotentialines that areto be calculatedare shovn in figure 1 in the top setof axes.We see
therethefringing field attheedgeof atwo-dimensionaparallel-platecapacitorTheplatesareassumed
to be semi-infinite,and at potentialst V. The coordinatesof ary point in the plane are expressed
asacomplec number:{ = & + in. The planeis thereforecalled the {-plane,and what is required
is a function ®(¢) giving the electric potentialat any point. This functionis usually obtainedusing
conformal-mappingechniqueg12]. In generalconformaltechniquesolve a problemby relatingits
geometryto a simplergeometryin which the governing
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e(—l — ezee’ ,
ef = Wk(ec_l) ’
C(—1—2z = Wi(e™h),
z = (—1-Wi(eh). )

Somefurtheranalysignotgivenhere)shovsthattherestriction—n < 3z < 7 impliesthatthebranch
index k is alsospecifiedpnce( is known; moreover, we cangive ananalyticformulafor this, in terms
of K, the unwindingnumber5, 7]. Theexpressions

SC—m
2m -‘

k=K = | ©)
Herethe symbol [ 7 denoteshe ceiling function, which is the integer obtainedby roundingup (as
opposedo floor whichis obtainedby roundingdown).

Figure2 shavs how theinversetransformatiorworks.Recallingthenotation, = £+in, wedivide
the ¢-planeinto strips of width 2. The main strip betweenthe plates,and extendingto theright, is
—7 < i < « andis shovn containingsolid lines. The strips—37 < n < —7 andw < n < 37 are
shavn containingdashedines. Eachstrip is transformedusinga differentbranchof W, the onewith
index k = K(¢), onto a distinct portion of the strip —7 < 3z < . The portionsof the strip thus
mappedare symmetric,in the sensethat W_;, and Wy mapinto regions symmetricaboutthe real z
axis45

In summarywe have derivedthefollowing new analyticalformulafor thesolutionfor thefringing
fields of a semi-infinitecapacitor The potentialatthe point ¢ is

= (V/mS[¢—1=Wi) ()] - 7)

As statedin the introduction,for this formulato be actually useful,it mustbe easily evaluated.
Although the numberof computerpackageghat contain¥ built-in is still small, the packagesre
amongthe mostpopularonesat the moment.Thereforethis formulais genuinelycomputational.
Thisapplicationto conformalmappingsaddsaninterestingpostscripto thehistoryof thedefinition
of W. Theequation(1) doesnot by itself completelydefinethe brancheof W [4, 6], asexplainedin
the next it must Td(v)Tj Oation3M50 Td( 6n)1.0799 0 Td(the)Tj 98399 0 Td(Tm(.)T 41d(xri7h/R11 9d)Tj 37.31
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T Wo(x) W_1(z) Wi(z)
e 1 —0.5321 —4.5974 | —0.5321 +4.597¢
1 0.5671 —1.534 — 4.3754 —1.534 +4.3751
0 0 comple infinity comple infinity
—1/e -1 -1 —3.089 + 7.462 1
—1/4 —0.3574 —2.153 —3.490 +7.414+¢
—1/4+4 | 0.3169 + 0.6807% | —0.9667 — 2.532% | —1.843 +6.2414
—1/4—4 | 0.3169 — 0.6807% | —1.843 —6.241¢ | —0.9667 + 2.5324

Tablel. Someexactandapproximatevaluesfor theLambertW function.Of theinfinite numberof branchedVvy,,
we takulate 3 branchesThe entries‘complex infinity’ meanthatthe valuesof W_;(0) andW1(0) have infinite

realpart, but theirimaginarypartsdependuponthedirectionin which 0 is approached.

The LambertW function hasa rich variety of applications



