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ABSTRACT
Given a real parametric polynomial p(x) and an interval
(a; b) ‰ R, the Complete Root Classiflcation (CRC) of p(x)
on (a; b) is a collection of all possible cases of its root classifl-
cation on (a; b), together with the conditions its coe–cients
must satisfy for each case. In this paper, a new algorithm
is proposed for the automatic computation of the complete
root classiflcation of a parametric polynomial on an inter-
val. As a direct application, the new algorithm is applied to
some real quantifler elimination problems.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms|Algebraic algorithms

General Terms
Algorithms

Keywords
Complete root classiflcation, real root, parametric polyno-
mial, interval, real quantifler elimination

1. INTRODUCTION
The counting and classifying of the roots of a polyno-

mial have been the subject of many investigations. This pa-
per concerns the complete root classiflcation of a parametric
polynomial on an interval.

RC and CRC. Let p(x) be a real polynomial with constant
coe–cients. The root classiflcation (RC) of p(x) on R is
denoted by

[ L1; L2 ] = [ [n1; n2; : : :]; [m1; ¡m1; m2; ¡m2; : : :] ];

where nk are the multiplicities of the distinct real roots of
p(x) on R, and mk are the multiplicities of the distinct com-
plex conjugate pairs of p(x), and L1 = [n1; n2; : : :] is called

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’08, July 20–23, 2008, Hagenberg, Austria.
Copyright 2008 ACM 978-1-59593-904-3/08/07 ...$5.00.

the real RC of p(x) on R . Let a; b 2 R [ f¡1; +1g. The
RC of p(x) on (a; b) is denoted by a list L = [n1; n2; : : :],
where n1; n2; : : : are the multiplicities of the distinct real
roots of p(x) on (a; b). For a real polynomial p(x) with para-
metric coe–cients, the complete root classiflcation (CRC) of
p(x) on (a; b) is a collection of all possible cases of its RC
on (a; b), together with the conditions its coe–cients must
satisfy for each case.

The history of CRC is short. The CRC of a real para-
metric quartic polynomial on R was found by Arnon in 1988
[2]; the flrst method for establishing the CRC of a real para-
metric polynomial of any degree on R was given by Yang,
Hou and Zeng in 1996 [10]. They illustrated their method
by computing the CRC of a reduced sextic polynomial. The
flrst automatic generation of CRCs was described and im-
plemented by Liang and Zhang [7], with some improvements
added in [5]. Further improvements to the algorithm were
made in [6] by replacing the ‘revised sign lists’ (Deflnition 4
below) with the direct use of ‘sign lists’. As well as ofiering
greater e–ciency, the new algorithm ofiers a better fllter for
eliminating non-realizable conditions.

All works above are on R, and applications often need
CRC on an interval. For example, in robust control [1] and
problems concerning program termination [12], we have to
determine the conditions on the parametric coe–cients of
p(x) such that 8 x > 0; p(x) > 0, or the conditions such
that 8 x 2 (a; b); p(x) 6= 0. Therefore, it is meaningful to
develop an algorithm for computing the CRC of a parametric
polynomial on an interval.

However, in order to develop such an algorithm, we have
to face two challenging problems. The flrst problem is the
determination of the conditions for a parametric polynomial
having a given number of real roots on an interval. One
naturally thinks of the well-known Sturm sequence. The
Sturm sequence of a polynomial with known, constant co-
e–cients is a good tool for computing the number of real
roots on an interval, but it is inconvenient and ine–cient
when the given polynomial has parametric coe–cients. A
better solution uses the fact that we know how to determine
the conditions for a polynomial having a given number of
real roots on R [6], and converts the problem of the de-
termination of conditions on an interval into a problem on
R. This is done in Section 3, where Theorem 4 is given.
Let p 2 R[x] with p(x) = anxn + an¡1xn¡1 + ¢ ¢ ¢ + a0 and
an 6= 0. Let a; b 2 R such that p(a) 6= 0 and p(b) 6= 0.

Let “1(x) = (1 ¡



(1 + x2)np
�

b+ax2

1+x2

�
. Then L = [r1; r2; : : : ; rk] is the RC of

p(x) on (a; b), if and only if L2 = [r1; r1; r2; r2; : : : ; rk; rk] is
the real RC of “2(x) on R. Therefore, the conditions for
p(x) having L as its RC on an interval can be obtained by
computing the conditions for “2(x) having L2 as its real RC
on R .

The second problem is the computation of the ¢-sequence
of “2 (Deflnition 5). We try to determine the conditions for
“2 having L2 as its real RC on R . The set of all possible sign
lists of “2 can be determined by Theorem 2 and 3. Now, in
order to make the multiplicities of the 2k distinct real roots
of “2 be r1; r1; r2; r2; : : : ; rk; rk respectively, we also have to
determine the possible sign lists of the polynomials in the
¢¡sequence of “2. According to Proposition 1, ¢1(“2)
can be determined by the maximal index ‘ of non-vanishing
members in the sign list of “2 which actually is the total
number of distinct (real and complex) roots of “2. Since L2

does not contain information about the number of distinct
complex-conjugate roots of “2, the maximal index ‘ is not
uniquely determined. Therefore, unlike the case of RC on
R [6], there may be more than one ¢1(“2) for the real RC
L2, and consequently the conditions for “2(x) having L2 as
its real RC on R would be more complicated. So the ques-
tion is how to determine these ¢1(“2) and corresponding
conditions.

In this paper, a new algorithm for the automatic compu-
tation of the CRC of a parametric polynomial on an interval
is proposed. The new algorithm has been implemented in
Maple. As an immediate application, the new algorithm
has been applied to some real quantifler elimination prob-
lems. However, it should be emphasized that the CRC of a
parametric polynomial on an interval contains more infor-
mation than is needed for these problems, and consequently
it has more potential applications than the examples given
here.

2. PRELIMINARY
In this section, we review some deflnitions and theorems

which mainly come from [10] and [6]. They are necessary
for the new algorithm. Let p(x) 2 R[x] with p(x) = anxn +
an¡1xn¡1 + ¢ ¢ ¢ + a0 and an 6= 0.

Definition 1. The 2n £ 2n matrix M0BBBBBBBBB@

an an¡1 an¡2 : : : a0

0 nan (n ¡ 1)an¡1 : : : a1

an an¡1 : : : a1 a0

0 nan : : : 2a2 a1

: : : : : :
: : : : : :
an an¡1 : : : a0

0 nan : : : a1

1CCCCCCCCCA
is called the discrimination matrix of p.

Definition 2. For 1 • k • 2n, let Mk be the kth prin-
cipal minor of M , and let Dk = M2k. The n-tuple D =
[D1; D2; : : : ; Dn] is called the discriminant sequence of p.

Definition 3. If sgn x is the signum function, sgn 0 = 0,
then the list [s1; s2; : : : ; sn] = [sgn D1; sgn D2; : : : ; sgn Dn] is
called the sign list of p.

Definition 4. The revised sign list [e1; e2; : : : ; en] of p(x)
is constructed from the sign list s = [s1; s2; : : : ; sn] of p as

follows. If [si; si+1; : : : ; si+j ] is a section of s, where si 6= 0,
si+1 = si+2 = : : : = si+j¡1 = 0 and si+j 6= 0, then we
replace the subsection [si+1; : : : ; si+j¡1] by

[¡si; ¡si; si; si; ¡si; ¡si; si; si; : : :] ;

i.e., let ei+r = (¡1)b(r+1)=2csi, for r = 1; 2; : : : ; j ¡ 1, and
keep other elements unchanged, i.e., let ek = sk. The revised
sign list of p (resp. s) is denoted by rsl(p) (resp. rsl(s)).

Yang, Hou and Zeng used the following theorem to cal-
culate the number of distinct complex-conjugate roots and
real roots.

Theorem 1. Suppose a polynomial p 2 R[x] has revised
sign list rsl(p). If the number of non-vanishing members
of rsl(p) is s, and the number of sign changes in rsl(p) is
v, then p(x) has v pairs of distinct complex-conjugate roots
and s ¡ 2v distinct real roots.

In order to calculate the multiplicities of roots, Yang, Hou
and Zeng used the following deflnitions and propositions.

Definition 5. Let ¢(p) denote gcd(p(x); p0(x)), and let
¢0(p) = p(x), ¢j(p) = ¢(¢j¡1(p)), j = 1; 2; : : : . Then
¢0(p); ¢1(p); ¢2(p); : : : is called the ¢-sequence of p.

Proposition 1. If rsl(p) contains k zeros, equivalently,
Dn = : : : = Dn¡k+1 = 0 but Dn¡k 6= 0, then gcd(p; p0) =
Pk(p; p0), where Pk(p; p0) is the kth subresultant of p(x) and
p0(x).

The relationship between the RC of ¢j(p) and the RC of
its ‘repeated part’ ¢j+1(p) is given by the following propo-
sitions.

Proposition 2. If ¢j(p) has k distinct roots with respec-
tive multiplicities n1; n2; : : : ; nk, then ¢j+1(p) has at most
k distinct roots with respective multiplicities n1 ¡ 1; n2 ¡
1; : : : ; nk ¡ 1.

Proposition 3. If ¢j(p) has k distinct roots with respec-
tive multiplicities n1; n2; : : : ; nk, and ¢j¡1(p) has m distinct
roots, then m ‚ k, and the multiplicities of these m distinct
roots are n1 + 1; n2 + 1 : : : ; nk + 1; 1; : : : ; 1 respectively.

However, the old algorithms [5] and the methods above
have to work with revised sign list which is a major source of
ine–ciency, since we have to transfer the output conditions
in terms of revised sign lists to conditions in terms of sign
lists. The transferring process is usually very di–cult and
full of opportunities for including non-realizable conditions.
This consideration motivated the authors to propose a new
algorithm for overcoming these disadvantages [6]. The new
algorithm ofiers improved e–ciency and a new test for non-
realizable conditions. The improvement lies in the direct use
of sign lists, rather than revised sign lists.

The algorithm uses the following deflnitions and theorems,
where \PmV" means \generalized Permanences minus Vari-
ations" [3].

Definition 6. Let s = [sn; : : : ; s0] be a flnite list of el-
ements in R such that sn 6= 0. Let m < n such that
sn¡1 = ¢ ¢ ¢ = sm+1 = 0, and sm 6= 0, and s0 = [sm; : : : ; s0].
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If there is no such m, then s0 is the empty list. We deflne
inductively

PmV(s) =

8<: 0 ; s0 = ;;
PmV(s0) + †n¡m sgn(snsm) ; n ¡ m odd;
PmV(s0) ; n ¡ m even;

where †n¡m = (¡1)(n¡m)(n¡m¡1)=2.

The following theorem gives the number of distinct roots
in terms of sign lists.

Theorem 2. Let D = [D1; : : : ; Dn] be the discriminant
sequence of a real polynomial p(x) of degree n, and ‘ be the
maximal index such that D‘ 6= 0. If PmV(D) = r, then p(x)
has r + 1 distinct real roots and 1

2
(‘ ¡ r ¡ 1) pairs of distinct

complex conjugate roots.

The next theorem can be used to detect the non-realizable
sign lists in output conditions.

Theorem 3. Let S = [s1; : : : ; sn] and R = [r1; : : : ; rn]
be the sign list and the revised sign list of p(x) respectively.
Then PmV(S) = PmV(R).

At last, we review a result given by Yang and Xia [9][11]
for computing the number of real roots on intervals, which
gives us some clue for solving the flrst problem mentioned
in Section 1.

Let p 2 R[x] with p(x) = anxn + an¡1xn¡1 + ¢ ¢ ¢ + a0

and an 6= 0. Let a; b 2 R such that p(a) 6= 0 and p(b) 6= 0.

Let “1(x) = (1¡x)np
�

b¡ax
1¡x

�
and “2(x) = “1(¡x2) = (1+

x2)np
�

b+ax2

1+x2

�
. Then, it is easy to see that coefi(“1; x; n) =

(¡1)np(a) 6= 0, coefi(“2; x; 2n) = p(a) 6= 0 and “1(0) =
coefi(“1; x; 0) = coefi(“2; x; 0) = p(b) 6= 0. Furthermore

Proposition 4. #fx 2 (a; b)jp(x) = 0g =
#fx < 0j“1(x) = 0g = 1

2
#fx 2 Rj“2(x) = 0g.

3. BASIS OF THE ALGORITHM
In this section, we establish the basis for the new algo-

rithm. The main idea is that we transfer the computation
of CRC for a parametric polynomial on an interval to the
computation of CRC for a parametric polynomial on R.

Theorem 4. Let p(x); “1(x); “2(x) be deflned as in Sec-
tion 2. Then, [r1; r2; : : : ; rk] is the RC of p(x) on (a; b), if
and only if [r1; r1; r2; r2; : : : ; rk; rk] is the real RC of “2(x)
on R.

Proof. Since [r1; r2; : : : ; rk] is the RC of p(x) on (a; b),
we can decompose p(x) in C as

p(x) = an

kY
i=1

p

r



PolySL.
Input: “2 and L2.
Output: The set of all possible sign lists of “2.
Procedure:

† Compute the discriminant sequence D = [D1; : : : ; D2n]
of “2.

† Compute the set S0 of all possible sign lists from D: for
1 • k • 2n, if Dk 2 R, then Dk ! sgn(Dk); otherwise,
Dk ! f¡1; 0; 1g. For example, if D = [1; ¡2; a], then
S0 = f[1; ¡1; ¡1]; [1; ¡1; 0]; [1; ¡1; 1]g.

† Compute S = fs 2 S0j PmV(s) = PmV(rsl(s)) = 2k ¡
1g



IntCRC
Input: A real parametric polynomial p(x), and a; b 2 R [
f¡1; +1g.
Output: The CRC of p(x) on (a; b).
Procedure:

L ˆ AllRC(deg(p))
compute “2

for L in L do
C ˆ IntCond(“2; DRC(L))
if C 6= NULL then

return L and C

Optimization of algorithm. Finally we discuss the op-
timization of the algorithm. In comparison with the case
on R, the output conditions of the CRC of a parametric
polynomial on an interval is usually large, especially when
the parametric polynomial has a general form. So there
remains the work of condensing the output conditions. Sup-
pose [D1; : : : ; D2n] is the discriminant sequence of “2, and
S is the set of all possible sign lists of “2 for “2 having
L2 = [ f¡1



All possible sign lists of P6 would be [1; 1; 1; ¡1; 0; 0],
[1; 0; 0; ¡1; 0; 0],[1; ¡1; ¡1; ¡1; 0; 0], [1; 1; 1; ¡1; 1; 1],
[1; ¡1; 0; 0; 1; 1], [1; 0¡; ¡1; ¡1; 1; 1],[1; 1; 1; <>; ¡1; 1],
[1; 1; 1; 0; 0; 1], [1; ¡1; ¡1; 1; 1; 1], [1; ¡1; ¡1; 0; 0; 1],
[1; ¡1; ¡1; ¡1; ¡1; 1], [1; 0; 0; ¡1; <>; 1].

Now these sign lists of P6 can be divided into two groups:
G4 = f[1; 1; 1; ¡1; 0; 0]; [1; 0; 0; ¡1; 0; 0]; [1; ¡1; ¡1; ¡1; 0; 0]g
and G6 = f[1; 1; 1; ¡1; 1; 1]; [1; ¡1; 0; 0; 1; 1]; [1; 0¡; ¡1; ¡1;
1; 1]; [1; 1; 1; <>; ¡1; 1]; [1; 1; 1; 0; 0; 1]; [1; ¡1; ¡1; 1; 1; 1],
[1; ¡1; ¡1; 0; 0; 1]; [1; ¡1; ¡1; ¡1; ¡1; 1]; [1; 0; 0; ¡1; <>; 1]g.

If the sign list of P6 belongs to G4, then the number of
distinct roots of P6 is 4. So the ‘repeated part’ ¢1(P6) = P62

and the RC of P62 is MinusOne([1; 1]) = [ ]. For P62 and [ ],
IntCond is called again, obtaining that the condition for P62

having [ ] as its real RC on R is its sign list being [1; ¡1].
At this point, the termination condition 2 is satisfled, so

IntCond terminates. If the sign list of P6 belongs to G6,
then the termination condition 3 is satisfled, and IntCond
terminates.

In summary, p3 has [1] as its RC on (0; 2), if and only if
the sign list of P6 belongs to G4 and the sign list of P62 is
[1; ¡1], or the sign list of P6 belongs to G6. The cases [ ]; [2]
and [1; 1] can be explained similarly.

For the cases [3]; [1; 2]; [1; 1; 1], since the output of IntCond
is the empty sequence NULL, they are not realizable. Based
on the CRC of p3, we can answer some questions concerning
real quantifler elimination. The discriminant sequence of P6

is [1; D2; D3; D4; D5; D6], where

D2 = ¡3b2 ¡ 2ab;
D3 = ¡a2b(2a + 3b);
D4 = a2b(a2b + 9b2 + 2a3 + 6ab);
D5 = ¡b(a2b + 2a3 + 6ab + 9b2)(4a3 + 27b2);
D6 = ¡(8 + 2a + b)b(4a3 + 27b2)2:

The necessary and su–cient condition for 8x 2 (0; 2)[p3 6=
0] is that case (1) holds, and case (1) holds ifi the sign list
of P6 be one of the following: [1; ¡1; 0; 0; <>; ¡1],
[1; ¡1; ¡1; 1; 0; 0]; [1; ¡1; ¡1; 0+; 0; ¡1]; [1; ¡1; ¡1; 1; ¡1; ¡1],
[1; ¡1; ¡1; ⁄; 1; ¡1]; [1; 0; 0; ¡1; 1; ¡1]; [1; 1; 1; ¡1; 1; ¡1].
Therefore, the necessary and su–cient condition for 8x 2
(0; 2)[p3 6= 0] is
[D2 < 0 ^ D3 = 0 ^ D4 = 0 ^ D5 6= 0 ^ D6 < 0] _ [D2 <
0 ^ D3 < 0 ^ D4 > 0 ^ D5 = 0 ^ D6 = 0] _ [D2 < 0 ^ D3 <
0 ^ D4 ‚ 0 ^ D5 = 0 ^ D6 < 0] _ [D2 < 0 ^ D3 < 0 ^ D4 >
0 ^ D5 < 0 ^ D6 < 0] _ [D2 < 0 ^ D3 < 0 ^ D5 > 0 ^ D6 <
0] _ [D2 = 0 ^ D3 = 0 ^ D4 < 0 ^ D5 > 0 ^ D6 < 0] _ [D2 >
0 ^ D3 > 0 ^ D4 < 0 ^ D5 6 0 D= 0 ^^

0 D<0]

_[D>
0 ^3<0] ^D> D̂<0D ^ D4 < D5 6= 0^



[P10,[1,0,0,0,0,1,1,1,0,0]],[P102,[1,-1]];[P10,

[1,0,0,0,0,1,1,1,1,-1],[1,0,0,0,0,1,0,0,-1,-1],

[1,0,0,0,0,1,1,*,-1,-1],[1,0,0,0,0,1,1,0+,0,-1],

[1,0,0,0,0,0+,0,-1,-1,-1],[1,0,0,0,0,*,-1,-1,-1,-1]]

(7) [1,1,1], if and only if

[P10,[1,0,0,0,0,1,1,1,1,1]]

Where,

(#1) P1042:=-2*b*x^2-5*c

(#2) P102:=54*a^4*c+27*b*a^4*x^2-225*x^2*c^2*a^2

+600*a*c^2*b+720*a*x^2*c*b^2-320*c*b^3-256*x^2*b^4,

(#3) P10:=x^10+a*x^4+b*x^2+c,

(#4) P104:=-3*a*x^4-4*b*x^2-5*c,

and the initial condition is

c <> 0

The discriminant sequence of P10 is [1; 0; 0; 0; 0; D6; D7;
D8; D9; D10], where

D6 = ¡a5; D7 = ¡a3(27a4 + 300abc ¡ 160b3);

D8 = (300bac ¡ 160b3 + 27a4)(720acb2 ¡ 256b4 + 27a4b

¡225a2c2);

D9 = ¡(720acb2 ¡ 256b4 + 27a4b ¡ 225a2c2)(¡1600b3ca

+256b5 ¡ 27a4b2 + 2250ba2c2 + 3125c4 + 108a5c);

D10 = ¡c(¡1600b3ca + 256b5 ¡ 27a4b2 + 2250ba2c2

+3125c4 + 108a5c)2

Again, we assume that the initial condition c 6= 0 holds.
Then (8 x > 0)[p5 = x5 + ax2 + bx + c > 0] ifi case (1) holds.
That is [D6 < 0^D7 c

That is [D7 =1 Td
(2)Tj
/T1_8f
596 Tf
-174.72 3Tf
5.23 3.81 Td
(5)Tj
v+n..04 0 Td
1a


