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(1) long-range efiects will produce non-convergent integrals in incorrectly
formulated calculations of efiective properties,

(2) these integrals can easily pass unnoticed or be assigned some non-unique
flnite value, and

(3) the correct formulation of calculations of efiective properties is now
known (and is described here).

Quite a few researchers still think that concern over non-convergent in-
tegrals is only a mathematical quibble, for the following seductive reasons.
First, it has seemed at times in the past that all proposed schemes arrive at
the same, presumably correct, answers and thus there has been no incentive,
such as con°icting results would provide, to examine the various schemes criti-
cally. This paper shows, however, that cases do exist in which difierent schemes
lead to con°icting results and that the prevailing idea that all methods give
the same answers is a result of the particular selection of problems studied in
the past. Second, those who have written on convergence di–culties have not
had, until now, a su–ciently secure physical interpretation of the causes of
non-convergence to be able to win over the unconvinced, who in the past seem
to have been more numerous. I hope the weight of the arguments presented
here will balance the weight of their numbers. Third, the fact that flnite, but
non-unique, values can be found for some of the non-convergent multiple inte-
grals has strongly tempted many people to think that what is needed is some
way of picking the ‘correct’ or ‘physically signiflcant’ flnite value. This has led
to a narrow view of the problem. For a start, it is by no means always possible
to flnd such flnite values for the integrals in question. Here the view will be
put forward that non-convergent integrals present a problem in interpretation
and not just a problem in correct evaluation.

Although the discussion in this paper is conflned to inhomogeneous media
that consist of a particulate phase suspended in a continuous matrix phase,
the ideas presented are valid in
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more general situations, and accordingly references to similar studies in related
areas are given in the last section of this paper. If we denote by c the volume
fraction of particles in a suspension or composite material, the calculations we
shall discuss are those accurate to O(c) or O(c2). The points which have not
been discussed at length in print before and which will receive particular at-
tention here are (a) the various possible averages of the ‘applied fleld’, (b) why
non-convergent integrals arise and the incompleteness of early approaches, (c)
nearest-neighbour and any-neighbour formulations, and (d) the characteristics
of problems in which the interactions are too strong for the methods described
here to be successful.

Non-convergent integrals in Einstein’s work

Einstein’s work [7, 8] was virtually the flrst on the subject. We start with
it partly because his method is still sometimes used [1] and partly because
the points arising from a consideration of his approach will recur when we
examine later work. The reconstruction of Einstein’s argument will obviously
be coloured by present knowledge; however, we are not interested primarily in
historical accuracy, but rather in a general framework for difierent approaches.
Einstein calculated the efiective viscosity of a suspension of spherical particles
in a Newtonian °uid of viscosity „ correct to flrst order in the volume fraction of
particles c. He proceeded by calculating the average rate of energy dissipation
W in a suspension which is subjected to a uniform average rate of strain eij .
(Tensors will be indicated by subscripts or double underlining as convenient.)
We have W = 2„eijeij and

e = V ¡1
Z

e dV ;
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where V is the volume occupied by the suspension, and the expression for W
uses the fact that inside a rigid particle eij = 0. Einstein actually expressed
W as a surface integral, but the argument is much clearer in terms of volume
integrals. We now substitute e = e + e0 into the deflnition of W and obtain

W = 2„eij eij + 4„eij e0
ij + 2„e0

ije
0
ij :

Although it is clear that by deflnition e0 = 0, Einstein retained the second

term because his expression for W in terms of surface integrals did not allow
him to see this obvious simpliflcation. To obtain an expression for e in the
neighbourhood of a particle, Einstein considered a subsidiary problem of °ow
around an isolated particle when there is a rate of strain e at inflnity. Next
he assumed that a volume integral over the suspension (i.e., over V ) could be
estimated by adding up independently volume integrals over regions V0 which
deflned the region of in°uence of each particle on the °ow, that is he assumed
that for any quantity Z which tends to zero with increasing distance from a
particle

Z = V ¡1
Z

Z dV … V ¡1
X

all particles

Z

V0

Z dV = n
Z

V0

Z dV ;

where n is the number density of particles. The only restriction on the size
of V0 was that the volumes could not overlap. In making this assumption,
Einstein apparently did not notice that e0 is O(r¡3) at large distances r from

a particle and that the assumption led to an expression for e0 in the form of
a non-convergent integral. By taking V0 to be a sphere and integrating flrst
over angular co-ordinates, Einstein obtained a flnite value for the integral of
e



as an estimate for W the expression 2„eij eij(1



Figure 1: The two regions used in Einstein’s calculation.

Saitô [25] and Mooney [19] noticed the non-convergent integral in the defl-
nition of e⁄ but not the one in W ⁄; Saitô re-evaluated e⁄ using a parallel-plate
(as opposed to spherical) geometry but used Einstein’s W ⁄ unchanged and
obtained a difierent result for the efiective viscosity. It is possible to improve
Einstein’s procedure so that only convergent integrals appear and only aver-
ages over the full suspension bounded by ¡ are used. We simply note that
e0 = 0 and hence

W = 2„eij eij + 2„e0
ije

0
ij :

The quantity e0
ije

0
ij is O(r¡6) far from a particle and the average can legiti-

mately be approximated using Einstein’s method. The result is

W = 2„eij eij(1 +
5

2
c) :

Several of the themes of this paper appear in the above description. The
distinction between the averages e⁄ and e taken over difierent regions had been
anticipated by Rayleigh [23] and was later used by Brown [5] and many others.
The fact that non-convergent integrals occur in pairs and that one is efiectively
subtracted from the other is important because otherwise, as Saitô
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showed, the efiective viscosity would depend upon the shape of the averaging
volume. Because of the possibility of shape dependence, it is necessary to show
that the result is independent of the shape and this is the advantage of the
second method described which approximates only those quantities that can
be expressed as convergent integrals. It should be noted flnally that Einstein
ofiered no proof that the error in his calculation was O(c2); we shall describe
work later in which error estimates become crucial. It has been suggested in
the past that Einstein’s choice of a spherical shape for V0 was based on this
shape being ‘physically signiflcant’. It is clear, however, that any other shape,
although giving difierent expressions for W ⁄ and e⁄ as functions of e , would
give the same expression for efiective viscosity.

The examples to be studied

The advantages that are gained from viewing together all the transport prob-
lems in media with particulate structure have been explained by Batchelor
[4]. For our present purposes the advantages are particularly marked because,
quite simply, some problems are harder than others and the harder ones force



The second problem is an efiective-modulus problem and is the linearly
elastic analogue of Einstein’s calculation. We wish to relate the (volume)
average stress ¾ij in a linearly elastic material to the average strain eij through
efiective moduli Le

ijkl [6, 9, 10, 27]. Using the idea of polarization stress, due
to Eshelby and Krõner [16], we have the stress at any point in the composite
material given by

¾ij = L1
ijklekl + ¿ij ;

where L1
ijkl is the tensor of elastic moduli of the matrix and ¿ is the polarization

stress which is deflned to be zero at any point in the matrix and (L2
ijkl¡L1

ijkl)ekl

at a point in one of the inclusions, the inclusions having elastic moduli L2
ijkl

(more general deflnitions of ¿ are possible but this is the most convenient in
this context). Since ¿ is non-zero only inside an inclusion, we can introduce a
quantity S [4, 6] which is deflned for any inclusion by

S =
Z

inclusion
¿ dV ;

where as indicated the integration is over the volume of an inclusion. Thus
each inclusion has associated with it a value of S. Averaging the equation for
¾ij then gives

¾ij = L1
ijklekl + ¿ij = L1

ijklekl + nh Sij i :

Here n is the number density of inclusions and the angle brackets have been
used to show that, to flnd the average value of S, we must use ensemble
averaging over conflgurations of particles. The relation between nh S i and e
will introduce the concentration tensors of Hill [10]. Having expressed ¾ in
terms of nh S i, we see that the statistical problem we are now faced with is
analogous to the one facing us in the sedimentation problem. We can make
the analogy more speciflc if we denote by S(0) the value of S
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calculated for an inclusion placed alone in a matrix in which the strain ‘at
inflnity’ is e. Then h S i … S(0) corresponds to Einstein’s approximation and

we wish to calcu1ate h S ¡ S(0) i.
The features of these two problems that make them of special interest are

as follows. In the sedimentation problem the non-convergent integrals one is
faced with are of the type

R
r¡1 dV which cannot be assigned any flnite value

at all no matter what geometry one tries. Questions of ‘physically signifl-
cant’ volumes cannot, therefore, even be raised. Another consequence of the
O(r¡1) integrand is that a naive nearest-neighbour approach (see next sec-
tion) produces qualitatively difierent answers from an any-neighbour one and
this shows dramatically that long-range interactions exist in the suspension in
addition to interactions between neighbouring particles. The interest in the
efiective-modulus problem comes from ambiguities which appear in the sub-



at the centre of the test particle and select a point r; PA(rjo)dr is then the
probability that the centre of any particle of the suspension will be within the
volume element dr while PN(rjo)dr is the probability that the centre of the
nearest neighbour to the test particle will be within dr. When the point r is
near the test particle the two functions are equal, but when it is far away PN

tends to zero while PA tends to the number density n.
We use the sedimentation problem to show how the functions PA or PN

arise in calculations. By deflnition, U¡U (0) is the contribution to the velocity
of sedimentation of the test particle due to the presence of other particles, and
as such we expect particles close to the test particle to have greater in°uence
on it than those further away. We might hope that an estimate of hU ¡U (0) i
could be obtained by averaging the efiect of just one other particle on the test
particle and write

hU ¡U (0) i …
Z

(U ¡U (0))P (rjo)dr :

Since U ¡U (0) is for two particles an O(r¡1) quantity, it is important to know
whether PA or PN is used in the integral. If PA is used the integral is non-
convergent, while if PN is used the integral is convergent and gives an O(c1=3)
approximation for hU ¡ U (0) i. This last result is in con°ict with work [3,
24] which flnds an O(c



example, consider a cloud of sedimenting particles placed flrst in a container
which it completely fllls and secondly in one which has a substantial layer
of clear °uid between the cloud and the walls. In the flrst case the °uid
displaced as the particles sediment will have to °ow through the cloud whereas
in the second case it will °ow around the cloud. The velocity hU ¡U (0) i will
be difierent for the two cases and cannot be calculated until the updraft of
displaced °uid is taken into account. As explained in [3], the only quantity
that can be calculated is hU ¡U (0) i ¡ hu i, where hu i is the average velocity
of material (either °uid or solid) within the cloud and is determined by the
overall speciflcation of the problem and not by interactions between pairs of



Calculating long-range interactions

The method used in [18] to calculate long-range interactions was an extension
of the ideas described in the section on Einstein in that a distinction was made
between the fleld ‘at inflnity’ and the average fleld. The formulation in [28] is
equivalent to [18]. For reasons which are given in the note added in proof at
the end of this paper we shall concentrate here on discussing the subtraction
method for calculating long-range interactions devised by Batchelor [3, 4]. The
method uses only flelds ‘at inflnity’ which equal the average fleld, and thus is
similar to the method ofiered earlier as an alternative to Einstein’s calculation.
The aspect of the method which is most misunderstood is the way in which
it apparently calculates long-range interactions using only the interactions be-
tween two particles. This impression is an understandable result of the form
taken by the flnal integrals. Now, however, an example has been found [6]
which shows that at least sometimes a correct application of the method re-
quires knowledge of interactions between larger groups of particles even though
the flnal integral still appears to require only two-particle interactions. The
example also shows that estimates of the error made in the calculation, which
are usually not given, are needed to ensure that the correct answer is obtained.
In discussing the example I shall have to assume the reader is familiar with
the basic subtraction device used by the method.

The example is a calculation to O(c2) of the compression modulus of a
composite material containing spherical particles. Chen and Acrivos [6] chose
a pure compression for their mean strain, i.e., eij = ¢ –ij. They then found
three ways to obtain convergent two-particle approximations to the trace of
h Sij ¡ S

(0)
ij i, which led to three difierent results. The ways were:

(1) Take the trace of Sij ¡ S
(0)
ij before averaging. The resulting convergent

integral contained no long-range efiects at all.
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(2) Form the quantity h Sij ¡ S
(0)
ij i ¡ Ah eij ¡ ¢–ij i, using the fact that

h eij ¡ ¢–ij i = 0 and then approximate to two particles. The constant A
is chosen so that the two-particle integral is convergent, but the long-range
efiects so calculated are not the correct ones.

(3) Approximate the quantity h Sij ¡ S
(0)
ij i ¡ Aijklh ekl ¡ ¢–kl i where the

tensor Aijkl is chosen so that the two-particle integral would converge for more
general choices of the mean fleld than eij = ¢–ij. This last choice gives the
long-range efiects correctly.

Chen and Acrivos found that the lack of uniqueness in the calculation
arose because the disturbance strain fleld outside a spherical particle in a
matrix in hydrostatic compression has the special form of a pure strain without
dilatation, i.e., it has zero trace, and the constant A which was successful in
producing a convergent integral was the component of Aijkl appropriate to this
state of afiairs. In more general situations both pure strain and dilatation are
present and the full Aijkl tensor must be used. The correct choice is proved
by considering the three-particle term in the general series expansion given by
Jefirey [13] and showing that only one choice gives a convergent integral at
this higher order. This is the same as supplying an estimate of the error made
in the calculation. The fact that one has a convergent integral, then, does not
prove that long-range interactions have been accounted for correctly. Other
less straightforward uses of Batchelor’s method exist [20] which have yet to be
made rigorous.

The macroscopic boundary and the inflnite-

volume limit

The above discussions have helped to elucidate the calculational procedures
used in the past and also have established the interpre384(fulln6.full26(es=on-con)26(v)27(ergen)28(t6(y)]TJ 0 -14.44 TD[(,8bl)]T- uy)-stabliDiimDgh)2der- rs. Ino57--



range, multiparticle interactions which can nevertheless be reduced to integrals
requiring knowledge only of two-particle interactions, provided the cautionary
note of the last section is remembered. What we still need is a physical picture
of the long-range interactions. Developing such a picture is the main aim here.
An approach developed independently in [15, 27, 2l] which builds on earlier
work [2, 9, 26] provides us with the required picture and at the same time
provides a link between our considerations and the well-known ‘self-consistent
scheme’ [16]. The new idea is to formulate the problem so that the bounding
surface ¡ and the manner in which it becomes inflnitely large are considered
explicitly.

Again using the elasticity problem as a speciflc example, the starting point
is a flnite sample of our composite material with displacements exactly equal to
eij xj



the efiect of the surface ¡ without flrst casting the surface integral into a more
suitable form.

Before proceeding to the manipulation of the equation, we note that be-
cause our equation is in terms of the Green’s function for an unbounded
medium, we require ¾ as well as u on the bounding surface ¡. We know
from the deflnition of the problem that ui = eij xj on ¡ but ¾ is unknown.
It may seem then that the new formulation of the problem has too many un-
knowns in it, ¾ on ¡ as well as Le. We shall flnd, however, that to solve the
equations and flnd Le to any order in the volume fraction c (say cp), the stress
is needed on the boundary only to O(cp¡1) and a simple iterative procedure
is then available to us. A further consequence of ¾ appearing in our integral
equation is that our equations will be implicit ones for ¿ (or equivalently h S i).



ui we obtain the term Z

V
Gij;k(¿jk ¡ ¿jk) dV ;

which has been shown in [27] to be absolutely convergent.
It is important to realize that the above considerations are not in con°ict

with other approaches [29, 30]. By using the Green’s function for the medium
bounded by ¡, Krõner and Koch [30, equation 5] seem to obtain an equation
which does not contain the ¿ term. Before solving their equation in the V ! 1
limit, however, they modify their equation using an operator P [30, equation
19] and this step is equivalent to introducing the ¿ term. Similarly in [29] the
use of [29, equation 13] in preference to [29, equation 17] is closely connected
with the need for the ¿ term here to ensure convergence in the V ! 1 limit.
See [17] for further discussion.

The reader is referred for the method of solution of the transformed equa-
tion, including the iterative procedure for handling the appearance of the un-
known ¿ in the equation, to [21] and [27]. Note, however, that in [27] the
authors separate the two terms which together guarantee the convergence of
the integrals in the formulation and evaluate them for a speciflc (elliptical)
outer boundary ¡; their proof earlier in their paper of the convergence of the
combined integral allows them to justify this, but it is an unfortunate way to
present the calculation.

A physical picture for convergence di–culties

The equations given above allow us flnally to present a physical picture to
explain the occurrence of non-convergent integrals. This picture is inevitably
given in terms of the particular examples that were chosen for study here, but
the principles should be clear enough for their application to other examples
to
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L ¡ h L i, has zero mean [17].
The second direction in which new work is progressing is motivated by the

existence of problems for which the methods described above fail to handle all
the long-range efiects present. These new efiects show up mathematically as
non-convergent integrals still present in the equations after the reformulations
above have removed the familiar troublesome terms [4, 11]. It is obviously
desirable to be able to recognize these more di–cult problems. One means
of recognition has been given in [13] which examines the interactions between
pairs of particles using the ‘method of ref1exions’. The key step is to determine
the number of re°exions which lead to non-convergent interactions. A more
physical idea is an extension of the ‘self-consistent’ ideas discussed above. We
shall use the example of °ow through a bed of flxed particles to illustrate this.
Suppose °uid is °owing through an array of particles, each of which is held
flxed in space. Near any one particle, the problem is one of °ow of a viscous
°uid around a particle and the equations are the familiar Stokes equations
for creeping °ow. Far from the particle, however, the problem is one of °ow
through a porous medium and the equations are Darcy’s equations for a porous
medium. The methods described above assume that the small-scale problem
around any particle, and the large-scale problem far from anyone particle are
governed by the same equations with possibly difierent constants (i.e., for the
elastic problem L1 near a particle and Le far from it). Problems in which the
governing equations themselves change require a more subtle formulation.
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without giving any indication of having failed. This underlines again the point
made in the text that any method must include some way of estimating errors
and the fact that an answer is obtained is no proof that the answer is correct.
The any-neighbour approach has been extended to include estimating errors
[13] but not the nearest-neighbour approach. Consequently there is always the
danger that the approach will be used unwittingly for problems, such as the
flxed particle one, to which it cannot be applied.
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