


Je�rey 350

has to be stretched in order to accommodate algorithms. Maple does this when the command

minimize(P (x); x) returns
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Figure 2: A graph of the auxiliary cubic for b

2

> 0. It can be seen that the root k

f

is positive

and greater than 3b

2

as required. The quantity D = b

2

1
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Figure 4: A graph of the auxiliary cubic for b

2

< 0. The quantity D = b

2

1

+ 2b

3

2

is negative, so

there are 3 real roots. They are marked on the �gure as k

x

, k

n

and k

f

.

Denote the positive solution of (9) by k

f

. Since k

f

> 3b

2

, the minimum of (4) is obtained

from (8) as

inf(P

4

) = �b

2

1

=k

f

�

1

4

(k

f

� 3b

2

)

2

:

The �rst term of this expression is better transformed so that b

1

does not appear explicitly, for

reasons that will be given below. The transformation is made by rewriting (9) in the form

1

2

k

2

�

3

2

b

2

k = b

2

1

=k ; (10)

and hence (5) is obtained.

It remains to �nd an explicit formula for k

f

. The expression (6) is a standard solution

of (9), but the fact that it gives the positive solution of (9) must be veri�ed. Rewrite (7),

introducing D, as s = b

2

1

+ b

3

2

+

p

b

2

1

D. First, consider the case b

2

� 0 and D � 0; all terms

in (6) are real and positive. Second, consider b

2

<

a

2 D

2

1

�
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Proof: If b

2

� 0, then clearly the minimum is 0 when y = 0. If b

2

< 0, then completing the

square can be used again to give the minimum as �

9

4

b

2

2

at y

2

= �

3

2

b

2

. The theorem uses the

minimum function to combine these cases.

Now there is an interesting development. One takes formula (5) for M (b

1

; b

2

), forgets that

it was derived for b

1

6= 0, and substitutes b

1

= 0. For the case b

2

> 0, one computes k

f

= 3b

2

and M (0; b

2

) = 0. For b

2

< 0, equation (11) can be reused with � = �, making s = �b

2

and

k

f

= 0. Then M (0; b

2

) = �

9

4

b

2

2

. Thus for these cases, M continues to give the correct result.

This is because of the transformation (10). For b

2

= 0, k

f

contains a term 0=0 and this prevents

a simple substitution from obtaining M (0; 0) = 0, or in other words, M (b

1

; b

2
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Theorem 6 With the notation already de�ned, P

4

has a relative maximum when D < 0 and k

x

is the root of C(k) satisfying 3b

2

< k

x

< 2b

2

. The formula for k

x

is

k

x

= s

1=3

e

2�i=3

+ b

2

2

s

�1=3

e

�2�i=3

+ b

2

:

Properties of the solutions

In spy stories, everyone seems to think that possessing the formula is all that is required | a

bit like a weak student facing a mathematics exam. However, one must be able to use it. The

formulae just derived can be used to show that the turning points of P

4

have some interesting

properties. For example, the sign of b

1

is all that decides the side of the origin on which the

in�mum lies; if there is a secondary minimum, then both it and the local maximum are always

on the same side of the origin, and that is the opposite side from the in�mum; the in�mum is

always further away from the origin than the secondary minimum.

After several pages of algebra, it is always comforting to try a few numerical examples and see

that everything works out. No one wants a repeat of the last scenes of The Maltese Falcon. In

addition, the examples here carry some useful lessons of their own. So consider y

4

� 14y

2

� 24y,

which of course has been carefully rigged to have integer turning points. Substituting b

2

= �14=3

and b

1

= �12 into (6) and asking Maple to simplify the result gives

k

f

=

2

�

143 + 180

p

3i

�

2=3

+ 98� 14

�

143 + 180

p

3i

�

1=3

3

�

143 + 180

p

3i

�

1=3

:

All computer systems can approximate this to 4:0000000, but none can automatically simplify

it to the exact number 4. This is an unavoidable di�culty associated with solving a cubic using

the standard formulae. The simpli�cation

�

143 + 180

p

3 i

�

1=3

=

1

2

(13 + 3

p

3 i), which is needed

to obtain the exact result, is not implemented in any present computer system; perhaps not

many humans would make the simpli�cation spontaneously either. Of course most of the time,

no simpli�cation is possible. In any event, the in�mum is at x

f

= 3, and equals �117. In the

same way, and with the same di�culties, k

n

= �6 and k

x

= �12.

Simply using the formula M given in (5) to compute a numerical minimum is not a very

interesting application. A more challenging question is to �nd the values of p that make the

polynomial x

4

+ 3px

2

+ 2x + 2 positive for all x. This type of problem is a simple example of

quanti�er elimination [1]. The condition is simplyM (1; p) + 2 > 0, which becomes a long messy

inequality when written out explicitly. Plotting the expression numerically shows that the answer

is p > �1=3, but an analytic proof is a real challenge.

The �nal example does not aspire to present a general method for a class of problems, but

the following challenge arose at the time of writing this paper. Given the points (x

i

; y

i

) equal

to (0; 4), (1; 2), (3; 1), (4; 2), (6; 5), �nd a convex polynomial that passes through them. The

Lagrange interpolating polynomial is a quartic:

y

L

=
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For all a and b, this passes through the given points. Two derivatives of this give a quartic

inequality y

00

S

> 0, which will be satis�ed if inf y

00

S

> 0. This reduces to an inequality in the two

variables a and b after using (5). Plotting contours shows that a region exists that satis�es the

constraint, and in particular it includes the rectangle 1=2000 < a � 1=1000, 0 < b � 1=1000.

A computer epilogue

Just when you think it is time to roll the references, a familiar character reappears: the com-

puter. The introduction mentioned that many CAS have routines to minimize functions, so the

programming aspects of Theorem 3 are of interest. It was seen above that if (6) is used with

numerical coe�cients, the system might obtain a result that is correct, but not in the simplest

form. In a similar way, if the evaluation of (6) generates intermediate quantities that are complex,

a small nonzero imaginary part can appear in the �nal result because of rounding errors.

An alternative to the explicit formula (6) is to use a token such as the RootOf o�ered in

Maple V release 4. To the description above, we can add that it also accepts a third argument,

in the form of an interval that brackets the required root. The interval could be speci�ed using

(6), of course, but it is better to surrender precision to gain algebraic simplicity. Now k

f

! 3b

2

as b

2

!1, and k

f

! (2b

2

1

)

1=3

as b

2

! 0, and k

f

!

p

�2b

2

1

=3b

2

as b

2

! �1. An estimate that

takes these limits into account, while staying with integral powers is k

a

= 1+ 3jb

2

j+

2

3

b

2

1

, which

is an upper bound on k

f

because C(k

a

) > 0. Thus, the expression (6) can be replaced by

k

f

= RootOf(k

3

� 3b

2

k

2

� 2b

2

1

; k; 0 :: 1 + 3jb

2

j+

2

3

b

2

1

) ;

where some artistic licence has been taken with Maple's input language. Similar constructions

exist in other systems. The advantages of this approach are that the system has the possibility

of obtaining the best representation of the root directly, and that the case b

1

= b

2

= 0 is no

longer a removable singularity. The disadvantages are that the representation is unfamiliar, and

it may not allow the further analysis that is possible with the explicit form; also the simpli�cation

routines existing for this type of construction are not yet at all strong.

A �nal comment repeats what has been achieved from a slightly di�erent perspective. The

paper opened with a cubic equation (2) whose roots gave turning points. The main theorem

replaced this with a di�erent cubic. One cannot avoid solving a cubic sooner or later, but the

auxiliary cubic in (9) has the advantage that one knows in advance which root to select and

where it will be.
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One of the referees proposed a counterexample to theorem 1: unfortunately my agents have

been unable to locate the movie Sneakers to verify this intelligence report.
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