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1 Introduction

From the Oxford English Dictionary we find that to un-
wind can mean “to become free from a convoluted state”.
Further down we find the quotation “The solution of all
knots, and unwinding of all intricacies”, from H. Brooke
(The Fool of Quality, 1809). While we do not promise
that the unwinding number, defined below, will solve all
intricacies, we do show that it may help for quite a few
problems.



The Unwinding Nuniber

The purpose of this column is to see exactly how these
identities have to be modified, once we choose the princi-
pal branch of the logarithm. Introducing the unwinding
number M (z) turns out to be sufficient for this purpose.

1.2 Unwinding number

We define the unwinding number ®(z) by
In(e®) = z + 2milm(z) . (5)

See [4], where this function is used to derive new identities
for the Lambert W function.

Functions similar to I have been defined several times
in the literature. In 1974, Apostol [1] briefly considered
a cognate of . Charles Patton has defined several func-
tions including UNLN(z) = Inexp z — z (see [8] for a brief
discussion of UNLN) which is 27il(z) in our notation.
Aslaksen [2] defines several functions including ITmq(z),
which turns out to be —M(z) in our notation. Tt would
be interesting to see the results of a thorough historical
investigation.

One can define M(z) without logarithms by using the
floor function. If &(z) is the imaginary part of z, then

z=30)).

2w (6)

R(2) = R(3(:) = |

Tt is easy to see that Mm(z) = 0 if —7 < $(z) <
and in general that m(z) = —n if (2n — )7 < $(2) <
(2n 4+ 1)7. Thus the unwinding number is constant on
horizontal strips. Note the closure on the top of the strips.
The function was called the ‘unwinding number’ be-
cause we thought of exp z as winding z around the branch
point of log; in order to get z back one has to ‘unwind’.

2 Connection with the Riemann
surf ma
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5. Theorem These all follow on writing a® as its defi-
nition exp(bIn(a)):

(a) In(z¥) = winz 4 2wim(wln z)

(b) (2122)" = z}2Y¥ exp(2miwhm(Inz; + In z5)) (the
generalization to n terms in the product is im-
mediate)

(c) (z")Y = z"Wexp(2miwm(vInz)) (notice that
the order is important, and we ascribe our con-
ventional meaning to z?%).

5 Applications

In this section we give some sample applications, to show
that this 1s not just an empty definition.

5.1 Fateman’s z" problem

Consider
y=2z" (11)

as an equation for z, given y and w in €, as discussed
in [5]. We divide this into two problems: we first try to
decide when ¢ = y'/* solves equation (11). This will give
sufficient conditions for the classical formula to be true.
We then try to discover all roots of (11), which turns out
to be harder.

5.1.1 Sufficient conditions
Let { = yl/“’. Then ¢ = exp(wIn() or

1
¢Y = exp(wlnexp(—Iny))
w
1 1
= —1 2mim(—1
exp(w(w ny+ Wli(w ny))
1
= yexp(2miwkm(—Iny)) .
w

This is equal to y if and only if whe((Iny)/w) is an integer,
say n. If w (which is given for the problem) is irrational,
then n and hence #® must be zero. If w is rational, then
one can show by pigeonhole arguments that W must still
be zero.

So ¢ is a root of z¥ = y if and only if m((Iny)/w) = 0,
or yisin the clearcut region for (Iny)/w. This can happen
if and only if (Iny)/w = t + ip where —7 < p < 7.
This implies that Iny = w(t + ip) = (a + ib)(t + ip) =
(at — bp) + i(bt + ap) or, with Iny = Ins + if giving the
polar coordinates of y, s = exp(at — bp) and 6 = bt + ap.
If b # 0 we can eliminate the parameter ¢ to get

5 = eaé‘/b—(a2+b2)p/b .
Remembering that —7 < p < m, then, if ab # 0, this is
a domain bounded by logarithmic spirals. For Fateman’s s
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2. that 1t gives a precise definition for ‘sim-
plify /symbolic’ in Maple or other CAS, that can be
used for provisos: one rewrites an expression using
W one uses whatever assumptions one has to evalu-
ate as many instances of J® as possible, and than one
sets to zero whatever unwinding numbers are left.
The proviso for the result is then just the unwinding
numbers that had been set to zero.

The principal disadvantages in using W in a computer
algebra system include

1. that rewrite rules using W essentially double the size
of the printed output (though not the DAG), giving
answers of the form Y + 2nilm(Y'), and

2. that the rules for removal of @ are essentially geo-
metric and need decisions to be taken on the basis of
where its arguments are in C.

Automatic geometric reasoning with elementary func-
tions is not well understood yet, and indeed this may
prove to be a “grand challenge” to symbolic computation
systems, with many other possible applications. Perhaps
we may turn this disadvantage of W into a stimulant for
development in this area.

More work needs to be done before this function can be
properly implemented. We invite discussion of this func-
tion, and in particular we invite discussions containing
trial implementations in real computer algebra systems.
The primary purpose of this present article is to help to
get people used to the idea of the unwinding number; of
course such a psychological adjustment—to learn to think
of  as an answer, not a question—is a necessary prelimi-
nary to its being used in practice. We invite you to check
the results in this paper, and to draw some clearcut re-
gions for yourselves (e.g. for /1 — z? or the hyperbolic
functions) to help make that adjustment.

Mathematicians make progress by turning analysis into
algebra. We hope that m(z) will help to turn complex
analysis into computer algebra.
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