

posed and discussed (see e.g. [3]). Many of the proposals
are based on appropriate modifications of the user inter-
face to the individual systems, but for the problems stud-
ied here, an alternative is to modify the mathematical
setting so that special cases can be identified efficiently.
We do this by formally replacing the notion of the ‘row
echelon reduction’ with a factorization which preserves
special-case information.

We also take the opportunity to write fraction-free
Gaussian elimination (see e.g. [5]) as a factorization. This
offers similar advantages in the case of parameters, but is
more useful conceptually in that we feel this is a simpler
presentation of| e fraction-fre e agmorihm, Bhic ae

ﬁro

echel 1

The following formula, which is based on a regulariza-
tion procedure associated with the name of Tihonov [7],
is more suited to symbolic computation (although as we
will see it has severe limitations of its own):

AT = lim A*(AA* +tI)7 . (13)
t—0

This formula follows easily from (8), because the right
hand side of (13) may be written

VEU* (U(2?

> B := trix(2,2,[1 11);
MoorePenroseConditions := matrix(2,2,[1,e,e,11);
proc(A::matrix, Ap::matrix) 1 e
local herm; B =
herm := m -> map(r->evalc(conjugate(r)), e 1
linalg[transpose](m));
print (map(normal,evalm(A &* Ap &* A - A))); > M := MoorePenrose(B, prB’);
print(map(normal,evalm(Ap&*A&+*Ap - Ap))); 1 .
print (map(normal@evalc, —
_ . —14+e2 —1+é€2
evalm(herm(A&+*Ap) - A &* Ap))); M =
print (map(normal@evalc, ¢ _ 1
evalm(herm(Ap&+*A) — Ap &* A))); —1+ €2 —14e2
end:
. > PrB;
The idea is that this procedure prints out four possibly) 5
—e

differently-shaped zero matrices; if any of these matrices
contains a nonzero entry, there may be a bug (but most
probably just a weakness in zero-recognition). The fol- > MoorePenroseConditions(B,M);

lowing Maple session explores these routines. r 0 0 7
> a := alphal[1] + I*alphal2]; 0 0
a:=ay+1as - -
> b := betal1] + I*betal[2]; 00
b:=p1 + 15 | 00]
> A := matrix(1,2,[a,bl); 0 0
A=|a1+Tay B +1p 0 0
> M := MoorePenrose(A, ’'pri’); I 0 0 T
—ay 4+ Tas
Ao | Pt BT L0 0
' _ —B1+ 10
a2 + as? + B2+ B> > C := subs(e=1,eval(B));
1 1
> MoorePenroseConditions(A, M); C .= -
[0 0]
> MC := MoorePenrose(C,’prC’);
0 1 1
0 JWC = 4 4
1 1
4 4
o]
> prC;
0 0 1
0 0

> MoorePenroseConditions(C,MC);

This yields four 4 by 4 matrices containing only zeros.

25

4.3 Limitations

This routine uses symbolic inversion (of AA* 4+ t]) as a
tool to compute the symbolic Moore-Penrose inverse. As
1s well-known, exact arithmetic solutions, and even more
so exact symbolic solutions, lead very quickly to com-
putationally intractable problems. Nonetheless if your
problem contains only one or two parameters, and isn’t
of too high a dimension, then efficiency and insight can
be gained by using a symbolic inverse or Moore-Penrose
inverse. For more discussion and examples, see [2].

5 Fraction-free LU factoring

In this section we generalize the PA = LU factorization
to the fraction-free case, which appears not to have been
done before. The paper [9] is based on a poster presented
at ECCAD 97, in which they gave something they called
(in quotes) a fraction-free ‘factorization’; we modify this
here to give a true factorization.

However, after writing down the true factorization (20
below), one realizes that the information in the extra fac-
tors F; and Fy are duplicated in the U factor, and hence
there is no need to form them explicitly except for con-
ceptual understanding, and thus we see that while they
do not give a true factorization, the treatment of [9] is
complete and practical.

Nonetheless, while no new information is discovered
this way, this true factorization approach has some ad-
vantages. First, it avoids Sylvester’s Identity, and indeed
avoids determinants altogether. It also, in our view, gives
a clearer explanation of just why we can pull common in-
teger factors out of certain submatrices, which is the key
to the whole algorithm.

We first see a theorem and then work out an example
in detail. The proof of the theorem follows the reason-
ing in the example and is thus omitted. Maple code for
the fraction-free factorization, which works for matrices
with entries from arbitrary integral domains, can be found
in [2].

Theorem 4: Frattion-Free Fattorization. Consider the
rectangular matrix A € Z"*™. Then we may write

F\PA=LFU , (20)

where Fy = diag(1, p1,p1p2, ..., P1P2 - Pn-1), P is a per-
mutation matrix, L € Z"*" is unit lower triangular, Fy =
diag(1,1,p1, p1p2, ..., p1P2 - Pn-2), and U € Z"*™ is
upper triangular. The p; are the pivots that arise.

Remarks.

o This factorization (or rather, its construction by al-
gorithm) gives a simple proof of divisibility of the
submatrices by p1, p2, and so on. It becomes clear

that since we put the factors in, with Fj, and we
ought to be able to take them out again, with Fs.

We may use either the one-step, or the two-step, frac-
tion free algorithm (see [5] for details) to construct
the factorization, which is the same in either case.
Since the two-step method is asymptotically more ef-
ficient than the one-step method, we should use that.
For clarity, we do not.

Formation of the factors in F; is not actually neces-
sary. We may simply record the pivots p;, ps, and
in fact even this is not necessary, since the pivots are
already recorded in the diagonal entries of U.

The determinants of each side are
n—1_n—2
P1 P ©Pn-1 det(A)

and

PrTpa T3 pa_adet(U)

respect) e W % CW W X

e reasonx

5.1 Example

We use example 9.1 from [5], which has the augmented
matrix

3 4 =2 1 -2
1 -1 2 2 7
A= (21)
4 -3 4 -3 2
-1 1 6 —1 1

In what follows we appear to temporarily allow divi-
sions. This is a notational device only, for exposition, and
it should be clear how to avoid ever forming any fractions
even temporarily.

Applying one elementary matrix step of ordinary PA =
LU factorization to this matrix would give A =

1 3 4 -2 1 -2
1/3 1 -7/3 8/3 5/3 z
4/3 1 -0 _13/3 14/3

—1/3 1 7/3 16/3 —2/3 1/3

(22)

To remove the fractions, we may rewrite the identity ma-
trix as

1/3 3 (23)

1/3 3

and insert these two factors in between the two factors
of A we have found so far. Since multiplication by a
diagonal matrix on the right multiplies columns, the 1’s
on the diagonal of the L factor all become 1/3. Once this
happens, we may factor 1/3 out of each row, giving

1 1
1/3 11
A =
1/3 4 1
1/3 ~1 1
3 04 —2 1 =2
-7 8 5 23
X
—25 20 —13 14
716 -2 1

Of course, multiplying both sides by diag(1, 3,3, 3) will
remove the fractions completely. So far, we have not cap-
tured the essence of the Bareiss-Jordan fraction-free al-
gorithm; all we have done is cleared fractions in ordinary

PA = LU factorization. Indeed, this is just the begin-
ning of what is called ‘division-free Gaussian elimination’
in [5]. [Apparently, ‘division-free’ is the accepted name for
a slightly different algorithm, which is less clever than the
‘fraction-free’ algorithm. We will not have cause to refer
to ‘division-free’ elimination again.] We need to do one
more step before the idea of ‘fraction-free factorization’
becomes clear. Call the last factor in the above equation,
A We will work just with A(), for easy typography.

We start as before by pretending to use ordinary ratio-
nal LU factorization steps. We may write A1) =

1 3 4 -2 1 -2
1 -7 8 5 23
%5 _60 _ 216 _ 477
7 7 7 7
—1 1 24 3 24

(24)
and again we will wish to clear the fractions (accidentally,
the last multiplier was also 7 and so the entries in the last
row are integers, but in general this will not happen). In
actual fact the pivot was —7, so we’ll adjust the minus
signs above, and use a similar rewriting o il

ahead of time that this divisibility will happen. Thus
we may cheaply take advantage of it.
Writing this observation as a factorization, we have

that diag(1,1, -7, =7)A()

1 1
1 1
- -25 1 3
7 1 3
3

