
"According to Abramowitz and Stegun"
or arccoth needn't be uncouth

R o b e r t M. C o r l e s s

D a v i d J . J e f f r e y

S t e p h e n M. W a t t

O n t a r i o R e s e a r c h C e n t r e

for C o m p u t e r A l g e b r a

.

for x < 0 the limit is In x - 2~ri. Related to this is the fact
that

In ~ # In z (3)
instead ln~ = ln z + 21ri on the cut. on the branch cut:

Similarly,

In 1 ~ --In z (4)
Z

on the branch cut: instead In ½ = - l n z + 2z-i on the cut.
Two families of solutions have been mooted to these

problems.

• [10] points out tha t the concept of a "signed zero "4
[9] (for clarity, we write the positive zero as 0 + and
the negative one as 0 -) can be used to solve prob-
lems such as the above, if we say that , for x < 0,
ln (x+0+i) = ln(x) +~ri whereas l n (x + 0 - 4) = ln(x)-~ri .
Equation (2) then becomes an equality for all x, inter-
preting the x on the right as x + 0 - i . Similarly, (3) and
(4) become equalities throughout. Attract ive though
this proposal is (and OpenMath should probably not
inhibit systems tha t do have signed zeros), it does not
answer the fundamental question: what to do if the
user types l n (-1) .
A similar idea is proposed in [12], who make the func-
tions two-valued on the branch cuts, so tha t In (-1) =
±~ri. This has the drawback of not fitting readily with
numerical evaluation.
More importantly, neither scheme addresses problems
off the branch cuts.

• [4] points out tha t most 'equalities' do not hold for the
complex logarithm, e.g. ln(z 2) ~ 21nz (try z = - 1) ,
and its generalisation

ln(zlz2) ~ lnz l + lnz2. (5)

The most fundamental of all non-equalities is z =
In expz, with an obvious violation at z = 2~ri. They
therefore propose to introduce the unwinding number
K, defined 5 by

/C(z) = z - l n e x p z [~ z - ~r]
21ri = | ~ [e Z (6)

(note tha t the apparent ly equivalent definition |-Y-~---~-~/ L 2~r J
differs precisely on the branch cut for In as applied to
exp z). (5) can then be rescued as

ln(zl z2) = In zl + In z2 - 27ri/C(ln zl + In z2). (7)

Similarly (3) can be rescued as

In ~ = In z -- 21ri/C(ln z). (8)

Note that , as part of the algebra of /C, /C(l~z) =
Ic(- lnz) ¢ ~C(ln ~).

These problems translate into difficulties with the powering
operation, even in cases as apparently simple as square roots.
In fact,

= V ~ ' X / ~ (--1) ~:(ln~l+ln,~). /C 262.8 281.04 Tm54cueTm5exp d(8L)Tj/F2 1 m Td(appa20g)Tj0c Tc 2.67572ouldc 5 1 2= t2 0ift

axis, passing through infinity if necessary: arctan is a
good

L e m m a 2 A n alternative formulation is

arccos(z) = - i l n (z + i l~-- z z) . (19)

This is tr ivially equal to:

--iln (z -I-iV/(1- zi(1 + z))

which may be numerically more stable near z = ::1=1. This
issue, and the choice between (18) and (19), which may de-
pend on the availability of hardware square-root capability,
are beyond the scope of this paper. The proof is in Appendix
B.

4.3 D e f i n i t i o n o f arctan z

[2] gives the following branch cuts: (- i c e , - i] and [i, ic~).
[10] suggests, and we will adopt, the following definition:

~/(in(1 + i z) - In(1 -- i z)) . (20)

This satisfies

arctan(-z) = - arctan(z), (21)

and is now the definition adopted by Common Lisp [13, p.
309], replacing

- i l n ((1 + i =) J l / (1 + z2)),
which does not satisfy (21).

Wi th this definition, we have the following relationship
(proved in Appendix D) between arcsin and arctan:

Z
arcsin z = arctan ~ + r / C (- l n (l+z)) -T r /C(- l n (1 - z))

(22)

4 .4 D e f i n i t i o n o f arccot z f5133. tc 5.916 0 Tpag55 0 Td(and)Tj0.03737 Tc 2.799z2)), This arccot
 T d (p .) T j 4 0 5 T c 1 . 9 1 c 2 . 1 7 9 6 8 5 9 (g i v e s) 7 T c 2 . 2 6 6 8 6 7 2 . 1 7 9 6 8 5 9 (g i v e s) w 5 T c - 9 . 6 7 7 T h i s n o w arccot0.6921)2 arcsin

5 . 1 Def in i t ion o f arcsinh z

[2] gives the branch cuts: (- ioo , - i) and (i, ioo). We follow
[10], which gives the principal expression

arcsinh(z) ---- in (z -t- V / 1 - ~) , (28)

and this satisfies the symmetry rule:

arcsinh(z) --- - arcs inh(-z)

5.2 Def in i t ion o f arccosh z

[2] gives the branch cut (-oo , 1): in addition there is a
branch point at z = -1 . We follow [10],

6.4 C o u t h n e s s o f arccot / arccoth

In this case, equation(13) translates into

arccoth(- iz) ~ i arccot(z). (39)

Substituting in equations (25) and (31) gives

5In = i In xz -- i / /
Since the inputs x° to the logarithms are equal, this is trivial.

6.5 C o u t h n e s s o f arcsec / arcsech

In this case, equation(13) translates into

arcsech(z) ~ i arcsec(z). (40)

Substituting in equations (26) and (34) gives

21n \ V - ~ - - (z ~ + ~ z z) a in (1/z + i v ~ - ~ - l T ~)

(41)
At z = ½, this becomes

a palpable falsehood. In fact, one side is the negation of the
other. Now, lemma 2 shows that

Replacing z by 1/z gives

In ¼+i =21n v V--W/"
Substituting this into equation (41) gives

Since lna = lnb if and only if a = b, this reduces to
~ i v / S T . These are equal when arg ~ < 0,

equivalent to arg(1 - 1/z) < 0 This is true precisely
when ~z < 0 or ~z = 0 and ~z _> 1. Hence the pair
arcsec/arcsech is not couth.

6.6 C o u t h n e s s o f arccsc / arccsch

In this case, equation(13) translates into

arccsch(- iz) ~ i arccsc(z). (42)

Substituting in equations (27) and (35) gives

In _---~z + 1 + ~ = In +

These are patently equal.
1°It is t e m p t i n g to a c o m p u t e r sc i en t i s t to wr i t e " a r g u m e n t s o f " ,

b u t t h a t w a y lles l i ngu i s t i c confus ion .

7 Imp l i ca t i ons for P h r a s e - b o o k W r i t e r s

An OpenMath phrase-book is actually a piece of software
that translates between the semantics of OpenMath (as de-
fined in the Content Dictionaries) and the semantics of a
particular application, as well as simply translating names.
Of course, life for the phrase-book writer is simplest if the
semantics of the application are the same as those of Open-
Math, but this will not always be the case.

A classic example of this would be the translation of
arccot between OpenMath, whose semantics we propose to
define by (25), and a system, such as Maple or Axiom, where
the semantics of arccot are defined by (24).

Application--~OpenMath arccot z ~ ~ - arctan z
OpenMath-+Application arccot z ~ arctan (l /z)

Derive has a different definition of arctan to eliminate
the unwinding numbers from (22), so that, for Derive,
arcsin(z) = arctan ~ This definition can be related

Derive
to that of OpenMath either via unwinding numbers or via
, ~ . . ~ (z) = arctan~. It is often possible to deal with such

Derive
differences on branch cuts by such a 'double conjugate' rep-
resentation. This representation has the advantage that the
(always legal) rule ~ ~ z means that the transformation is
self-inverse.

8 P r o p o s a l s

This section lists the concrete suggestions that the authors
have for OpenMath.

1. OpenMath should define a b (in the case of non-integer
b) via

a b = exp(b in a), (43)

rather than the current weasel words: "When the sec-
ond argument is not an integer care should be taken as
to the meaning of this function; however it is here to
represent general powering" (ax i th l . ocd [11]).

2. OpenMath should base all its single-valued definitions
of the naturally multi-valued elementary functions on
the logarithm function. This means that it would be
reasonable to define the

i s 1 .

arcsin (16) arcsinh (28) couth
arccos (18) arccosh (29) uncouth
arctan (20) arctanh (30) couth
arccot (25) arccoth (31) couth
arcsec (26) arcsech (34) uncouth
arccsc (27) arccsch (35) couth

4.

