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for x < 0 the limit is In x - 2~ri. Related to this is the fact 
that  

In ~ # In z (3) 
instead ln~ = ln z + 21ri on the cut. on the branch cut: 

Similarly, 

In 1 ~ --In z (4) 
Z 

on the branch cut: instead In ½ = - l n  z + 2z-i on the cut. 
Two families of solutions have been mooted to these 

problems. 

• [10] points out tha t  the concept of a "signed zero "4 
[9] (for clarity, we write the  positive zero as 0 + and 
the negative one as 0 - )  can be used to solve prob- 
lems such as the above, if we say that ,  for x < 0, 
ln (x+0+i )  = ln(x) +~ri whereas l n ( x + 0 -  4) = ln(x)-~ri .  
Equation (2) then becomes an equality for all x, inter- 
preting the x on the right as x + 0 - i .  Similarly, (3) and 
(4) become equalities throughout.  Attract ive though 
this proposal is (and OpenMath should probably not 
inhibit systems tha t  do have signed zeros), it does not 
answer the fundamental  question: what to do if the 
user types l n ( -1 ) .  
A similar idea is proposed in [12], who make the func- 
tions two-valued on the branch cuts, so tha t  In ( -1 )  = 
±~ri. This has the drawback of not fitting readily with 
numerical evaluation. 
More importantly,  neither scheme addresses problems 
off the branch cuts. 

• [4] points out tha t  most 'equalities'  do not hold for the 
complex logarithm, e.g. ln(z 2) ~ 21nz (try z = - 1 ) ,  
and its generalisation 

ln(zlz2) ~ lnz l  + lnz2. (5) 

The most fundamental  of all non-equalities is z = 
In expz,  with an obvious violation at  z = 2~ri. They 
therefore propose to introduce the unwinding number 
K, defined 5 by 

/C(z) = z -  l n e x p z  [ ~ z -  ~r] 
21ri = | ~ [  e Z (6) 

(note tha t  the apparent ly  equivalent definition |-Y-~---~-~/ L 2~r J 
differs precisely on the branch cut for In as applied to 
exp z). (5) can then be rescued as 

ln(zl z2) = In zl + In z2 - 27ri/C(ln zl + In z2). (7) 

Similarly (3) can be rescued as 

In ~ = In z -- 21ri/C(ln z). (8) 

Note that ,  as part  of the algebra of /C, /C(l~z) = 
Ic(- lnz) ¢ ~C(ln ~). 

These problems translate  into difficulties with the powering 
operation, even in cases as apparently simple as square roots. 
In fact, 
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axis, passing through infinity if necessary: arctan is a 
good 



L e m m a  2 A n  alternative formulation is 

arccos(z) = - i l n  ( z  + i l~-- z z )  . (19) 

This is tr ivially equal to: 

--iln (z -I-iV/(1- zi(1 + z)) 

which may be numerically more stable near z = ::1=1. This 
issue, and the choice between (18) and (19), which may de- 
pend on the availability of hardware square-root capability, 
are beyond the scope of this paper. The proof is in Appendix 
B. 

4.3 D e f i n i t i o n  o f  arctan z 

[2] gives the following branch cuts: ( - i c e , - i ]  and [i, ic~). 
[10] suggests, and we will adopt,  the following definition: 

~/(in(1 + i z )  - In(1 -- i z ) ) .  (20) 

This satisfies 

arctan(-z) = - arctan(z), (21) 

and is now the definition adopted by Common Lisp [13, p. 
309], replacing 

- i l n  ((1 + i = ) J l / ( 1  + z2)), 
which does not satisfy (21). 

Wi th  this definition, we have the following relationship 
(proved in Appendix D) between arcsin and arctan: 

Z 
arcsin z = arctan ~ + r / C ( -  l n ( l+z ) ) -T r /C( -  l n ( 1 - z ) )  

(22) 
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5 . 1  Def in i t ion  o f  arcsinh z 

[2] gives the branch cuts: ( - ioo ,  - i )  and (i, ioo). We follow 
[10], which gives the principal expression 

arcsinh(z) ---- in (z  -t- V / 1 - ~ ) ,  (28) 

and this satisfies the symmetry rule: 

arcsinh(z) --- - arcs inh(-z)  

5.2 Def in i t ion  o f  arccosh z 

[2] gives the branch cut ( -oo ,  1): in addition there is a 
branch point at z = -1 .  We follow [10], 



6.4 C o u t h n e s s  o f  arccot / arccoth 

In this case, equation(13) translates into 

arccoth(- iz )  ~ i arccot(z). (39) 

Substituting in equations (25) and (31) gives 

5In = i  In xz -- i / /  
Since the inputs x° to the logarithms are equal, this is trivial. 

6.5 C o u t h n e s s  o f  arcsec / arcsech 

In this case, equation(13) translates into 

arcsech(z) ~ i arcsec(z). (40) 

Substituting in equations (26) and (34) gives 

21n \ V  - ~ - -  ( z ~  + ~ z  z )  a in (1/z  + i v ~ - ~ - l T ~  ) 

(41) 
At z = ½, this becomes 

a palpable falsehood. In fact, one side is the negation of the 
other. Now, lemma 2 shows that  

Replacing z by 1/z gives 

In ¼+i =21n v V--W/" 
Substituting this into equation (41) gives 

Since lna  = lnb if and only if a = b, this reduces to 
~ i v / S T .  These are equal when arg ~ < 0, 

equivalent to arg(1 - 1/z) < 0 This is true precisely 
when ~z  < 0 or ~z  = 0 and ~z  _> 1. Hence the pair 
arcsec/arcsech is not couth. 

6.6 C o u t h n e s s  o f  arccsc / arccsch 

In this case, equation(13) translates into 

arccsch(- iz)  ~ i arccsc(z). (42) 

Substituting in equations (27) and (35) gives 

In _---~z + 1 +  ~ = In + 

These are patently equal. 
1°It  is t e m p t i n g  to  a c o m p u t e r  sc i en t i s t  to  wr i t e  " a r g u m e n t s  o f " ,  

b u t  t h a t  w a y  lles l i ngu i s t i c  confus ion .  

7 Imp l i ca t i ons  for  P h r a s e - b o o k  W r i t e r s  

An OpenMath phrase-book is actually a piece of software 
that translates between the semantics of OpenMath (as de- 
fined in the Content Dictionaries) and the semantics of a 
particular application, as well as simply translating names. 
Of course, life for the phrase-book writer is simplest if the 
semantics of the application are the same as those of Open- 
Math, but this will not always be the case. 

A classic example of this would be the translation of 
arccot between OpenMath, whose semantics we propose to 
define by (25), and a system, such as Maple or Axiom, where 
the semantics of arccot are defined by (24). 

Application--~OpenMath arccot z ~ ~ - arctan z 
OpenMath-+Application arccot z ~ arctan ( l /z )  

Derive has a different definition of arctan to eliminate 
the unwinding numbers from (22), so that, for Derive, 
arcsin(z) = arctan ~ This definition can be related 

Derive 
to that  of OpenMath either via unwinding numbers or via 
, ~ . . ~ ( z )  = arctan~. It is often possible to deal with such 

Derive 
differences on branch cuts by such a 'double conjugate' rep- 
resentation. This representation has the advantage that  the 
(always legal) rule ~ ~ z means that  the transformation is 
self-inverse. 

8 P r o p o s a l s  

This section lists the concrete suggestions that  the authors 
have for OpenMath. 

1. OpenMath should define a b (in the case of non-integer 
b) via 

a b = exp(b in a), (43) 

rather than the current weasel words: "When the sec- 
ond argument is not an integer care should be taken as 
to the meaning of this function; however it is here to 
represent general powering" ( ax i th l .  ocd [11]). 

2. OpenMath should base all its single-valued definitions 
of the naturally multi-valued elementary functions on 
the logarithm function. This means that  it would be 
reasonable to define the 

i s  1 .  



arcsin (16) arcsinh (28) couth 
arccos (18) arccosh (29) uncouth 
arctan (20) arctanh (30) couth 
arccot (25) arccoth (31) couth 
arcsec (26) arcsech (34) uncouth 
arccsc (27) arccsch (35) couth 

4. 




