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Abstract

We consider, from a symbolic point of view, a pair of definite integrals containing Lambert W ,
recently considered from a numerical point of view by Walter Gautschi. We transform the integrals
to a shape that can be integrated in special cases by a computer-algebra system or by using tables of
integrals, such as Prudnikov et al.

1 Introduction

The paper [4] examines, in effect, numerical schemes for the evaluation of the integrals1

I0(α, β) =

∫ ∞

1
T0

(
xe−x

)α
x−β dx (1)

and

I1(α, β) =

∫ 1

0
T1

(
xe−x

)α
x−β dx , (2)

where α and β are restricted to values ensuring convergence2. Here, Tk is the Tree T
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I0(2, 3) =

∫ ∞

0

e−2 v (1 − (1 + v) e−v)

v (1 − e−v)
dv = 3

2 − γ − ln 2 , (13)

and

I0(3, 2) =

∫ ∞

0

e−3 vv (1 − (1 + v) e−v)

(1 − e−v)3 dv = 5
2 − 6ζ(3) + 1

2π
2 . (14)

Similarly, I1 is easily evaluated in Maple if α and β are integer values (or are equal).

I1(2, 0) = −
∫ ∞

0

v2e−v (1 − v − e−v)

(1 − e−v)4 dv = 1
3 + 2ζ(3) + 1

3π
2 . (15)

An interesting variation is that Maple can sometimes evaluate the integrals if α and β differ by an
integer but are not themselves integers:

I0

(
3
2 ,

1
2

)
=

∫ ∞

0
e−3v/2 (1 − e−v − ve−v)

(1 − e−v)3 dv = −1
2 + 3

4π
2 − 21

4 ζ(3) . (16)

This does not always work, however. If α = 1/4 and β = −3/4, then the difference is an integer but neither
Maple nor Mathematica is able to evaluate the integral. For the simpler integral I = I0(α, β)+I1(1−β, 1−α)
this also happens.

At the time of writing, we do not know if any computer algebra system can evaluate these integrals for
values of α and β that have non-integer differences, or even merely for arbitrary α and β whose difference
is an integer.

4 Series

We pointed out earlier that when α = β the integrals for I0 and I1 could be identified as containing Ψ1,
the trigamma function, by using a series expansion. One is tempted fo.27l6(I)Tj
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When α = β this reduces, as claimed, to

Ψ1(α) =
∑

≥0

1

(α + �)2
. (20)

If we introduce a new variable m with the definition β = α−m, the sum in (19) becomes

S(m,α) =
∑

≥0

(
m + �

�

)
1

(α + �)m+2
. (21)

For explicit integers m, Maple can evaluate this sum in terms of known special functions such as the
polygamma functions Ψj(α) for j ≤ m + 1. For example,

S(4, α) = 1
24 Ψ1(α) +

(
1
12 α− 5

24

)
Ψ2(α) +

(− 5
24 α + 1

24α
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5 Comparison with Examples from [4]

We have seen here a reference solution for some examples in which α and β differ by an integer. For those
integrals for which we cannot derive a symbolic solution, we could use numerical methods such as those in
Maple’s evalf/Int, but this is less interesting. Tables 1 and 2 show that Gautschi’s results are as accurate
as he claimed.

Numerical integration of I0 and I1 in the forms containing T is not challenging in Maple; Gautschi’s
task was to do it outside a system that had easy and accurate evaluation of T , or W . Numerical evaluation
of the exponential forms given here is also not challenging: the singularities at v = 0 are removable and
standard tricks for the accurate evaluation of ev − 1, or ln(1 − y) in an equivalent logarithmic form of the
integral, make it easy. Moreover, Maple’s evalf/Int is more powerful yet. It uses singularity detection
and generalized series to eliminate most difficulties [5], and has no trouble here.

6 Concluding Remarks

One aim of this paper is to provide reference expressions for the integrals (1) and (2) in terms of quantities
such as γ, the Euler-Mascheroni Constant, and evaluations of functions such as the Riemann ζ function,
which we consider to be known and partially understood.4

Since the discovery of these special forms was the result of examining the properties of the two real
branches of the Tree T function, as well as the properties of their difference, the exploration of branch
relations in other Lambert W integrals may lead to further development of solutions to special cases.

This paper has shown a transformation that takes some integrals from forms containing T , or W , to an
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Table 1: The relative error of Gautschi’s approximations G(α, β) when compared with exact

symbolic values I
(s)
0 (α, β). Note that a dash indicates integrals for which we do not have

symbolic expressions. We also include the differences between Gautschi’s approximations

and Maple’s evalf/Int using Digits:=35, denoted I
(m)
0 .

α β

∣∣∣∣ I
(s)
0 (α,β)−G(α,β)

G(α,β)

∣∣∣∣
∣∣∣∣ I

(m)
0 (α,β)−G(α,β)

G(α,β)

∣∣∣∣
2 2 3.58 × 10−32 3.60 × 10−32

0 2.04 × 10−31 2.04 × 10−31

-2 1.40 × 10−32 1.40 × 10−32

1 1 7.46 × 10−33 7.44 × 10−33

0 2.20 × 10−32 2.20 × 10−32

-1 2.31 × 10−32 2.31 × 10−32

1
2 2 - 3.35 × 10−33

0 - 2.24 × 10−32

-2 - 6.43 × 10−33

Table 2: The relative error of Gautschi’s approximations G(α, β) when compared with exact

symbolic values for I�
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