
November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

146

under-determined systems), and characterize the components or manifolds
of solutions of such systems. This is part of the rapidly developing area
of Numerical Algebraic Geometry initiated in [23]. This yields new meth-
ods for problems which have been traditionally approached with symbolic
methods from Computer Algebra, such as factorization [3], Gröbner bases
and the completion of systems of partial differential equations. We have
extended this work to systems of differential equations in [14], and initiated
a study of Numerical Jet Geometry, using homotopy methods.

Despite the availability of very well developed implementations for ho-
motopy continuation methods [26,12] surprisingly little has been imple-
mented in the context of computer algebra systems for numerical solutions
for polynomial systems. We note that, for example, Gröbner bases in Maple
are limited to polynomials with rational coefficients. In Maple, the existing
solvers focus on univariate equations. Even when working with a powerful
Polynomial Homotopy Continuation package (in our case we have exten-
sively used Verschelde’s PHCpack [26]) we found the ability to perform
experiments and try out ideas in a rich environment such as Maple to be
a valuable asset. The work we discuss here represents a starting point for
Maple, since many of the other standard algorithms of Numerical Alge-
braic Geometry (such as the computation of mixed volumes) still are not
implemented in that context.

Existing Homotopy implementations in Maple include the univariate
program of Fee [6]. In that work Fee truncates the Riemann zeta function,
and uses a very efficient homotopy method he has developed for analytic
functions to find roots of this truncated function in a given domain. Root
counts are verified by using Cauchy’s integral formula, using numerical
quadrature, around the boundary of the domain. Kotsireas [11] has devel-
oped a multivariate fixed step homotopy method in Maple.

We have implemented a variable step homotopy continuation method
in Maple, both for second and third orders, using the code of Smith [18]
as a starting point. We compare the methods, and apply them to a vari-
ety of problems arising in polynomial system solving. For scalar functions,
higher-order schemes are often called Halley methods [7], because of Hal-
ley’s discovery in Newton’s era. Higher-order schemes allow more rapid
convergence and larger step sizes in processes such as homotopy solution
techniques.

In this paper, we first present the higher order method for solving a
single scalar equation. Then in the next section we apply it to systems,
and extend it to a homotopy method. In the applications section we apply

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

147

it to some well-known examples having finitely many roots. Finally we give
the first published example of a method using homotopy continuation to
identify the missing constraints in a nonlinear system of PDE.

2. Iterative schemes

Newton’s method to find solutions of a single nonlinear equation f(x) = 0 is
well known; it is also well known that the method is second order and that
higher-order methods have been derived [25,7]. Here we start by giving a
uniform treatment of the higher-order scalar schemes, as a preparation for
the vector case.

Consider solving the scalar equation f(x) = 0, given an initial estimate
x0 for the solution. We expand f(x) as a Taylor series around x0

f(x) = f(x0) + (x− x0)f ′(x0) + 1
2 (x− x0)2f ′′(x0) + · · · . (2.1)

Setting ∆ = x − x0 and assuming f(x) = 0, we can solve for ∆ by series
reversion. Abbreviating f(x0) to f for clarity, gives

∆ = − 1
f ′ f − f ′′

2(f ′)3
f2 +

3(f ′′)2 − f ′f ′′′

6(f ′)5
f3 + · · · . (2.2)

The series is written as shown to emphasize that it is a series in powers
of f(x0), where f(x0) will be small in some sense when x0 is close to the
root being sought. The classical Newton iteration is obtained by taking one
term of this series; taking two terms gives the third-order scheme

∆ = − f

f ′ − f ′′f2

2(f ′)3
, (2.3)

which has been called Chebyshev’s method. The Halley form of (2.3) is

∆ = − f

f ′ − 1
2ff

′′/f ′ . (2.4)

One derivation of this form solves (2.1) by writing 0 = f + f ′∆ + 1
2f

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

148

and solve this equation for ∆. None of the methods above can be applied
at a point x0 where f ′(x0) = 0, and Halley’s method cannot be used for a
function satisfying 2(f ′)2 − ff ′′ = 0, which means any function of the form
f(x) = 1/(Ax+B).

For the vector case, we use Cartesian-tensor notation [9]. When ap-
plying these results to homotopy methods, we shall give equivalent results
in vector-matrix notation. Let f : Rm → Rm be a vector function, with
component functions fi. Let f depend upon the vector x, which in turn
has components xj . We wish to solve fi(x) = 0, starting from an initial
estimate x(0). We direct the reader to the literature where a multivariate
Halley method of the type below is given [5].

The Taylor series for f about x(0) can be written using ∆j = xj −x(0)
j :

fi(x(0)) = fi(x(0)) + fi,k(x(0))∆k + 1
2fi,kh(x(0))∆k∆h + · · · . (2.5)

Let f̌ki be the inverse of fi,k, defined by f̌kifi,j = δkj , where δkj is the

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

149

basin of attraction. If an estimate x(0) is sufficiently close to an isolated
non-singular root x(e), then with each iteration a second-order method will
approximately double the number of digits that are correct, while a third-
order method will triple that number [8]. Thus, for example, an estimate
that is correct to 1 digit can be improved to 8 digits in 3 second-order
steps or 2 third-order steps. Since the computation of the second derivative
term is often expensive, in the scalar case, a higher-order method is usually
not an advantage. However, in the vector case, an iteration requires a
matrix inverse, making the iteration more expensive. In addition higher
order derivatives for polynomial systems can be cheaply obtained (e.g. by
automatic differentiation [4]) and this opens the possibility that the third-
order method will be more efficient.

If an initial estimate x(0) is further away from the root, and the conver-
gence theorems do not apply, then we must consider the basins of attraction
of the root. Graphical presentations of how particular basins of attraction
change with the iterative scheme have been published recently [25]. We
expect the basin of attraction to be larger for higher-order methods, but
have yet to investigate this.

3. Homotopy Method

Consider a system of equations p(x) = 0, which we wish to solve. Both
p and x are vectors. Suppose we possess a system of equations q

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

150

An appropriate start system is now described for the homotopy. Let
p(x) = (p1(x), . . . , pn(x)) = 0 denote the system of n polynomial equations
in n unknowns that we wish to solve. Let dj denote the total degree of
the jth equation (that is, the degree of the highest order monomial in the

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

151

a small nonzero value, and the next step will involve solving a slightly
perturbed problem H = δ, x(∆t) = α̃. This can lead to an accumulation of
error, unless residuals are carefully monitored.

ODE integrators usually adapt their step length according to relative er-
ror, whereas corrector methods for Newton’s method usually use a combina-
tion of residual and relative errors. Specifically the residual error ‖H(x, t)‖
at time t and the error, ‖∆x‖, where ∆x is the difference between succes-
sive values of x, are compared with a working tolerance ε. A challenge then
is to reflect the additional residual control in ODE integrators.

Another view of homotopy solving is that of solving a differential equa-
tion on a manifold (that is, solving a differential-algebraic equation). Both
Visconti [28] and Arponen [24] have implemented DAE solving methods in
Maple, and it would be of interest to use these in homotopy solving.

Differentiating the ODE (3.4) yields expressions for the higher order
derivatives:

Hx

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

152

which as usual will be directed to linear solvers, instead of the more ex-
pensive computational approach of inverting Hx. Now expanding to third
order gives:

H(x+ ∆x, t) = H(x, t) +Hx∆x+ (∆x)THxx(∆x)/2 +O(∆x3) , (3.8)

where (∆x)T is the transpose of the column vector ∆x. If the i-th compo-
nent of H is denoted by Hi, then in the equation above, Hi

xx is an n × n

matrix with entries Hi
xj xk

. Suppose ∆x = ∆̃x+ ˜̃∆x. Then ∆̃x is of order 2

and ˜̃∆x satisfies (3.8) to order 3. Substitution of this expression into (3.8),

using (3.7), ignoring terms in ∆x∆̃x, and the above, then shows that ˜̃∆x
satisfies to third order the following:

Hx
˜̃∆x = −(∆̃x)THxx(∆̃x)/2. (3.9)

From a computational point of view, notice the difference between the
above expression (3.9) and (2.6). Here the number of computations has
been reduced. Also notice that two linear systems must be solved: (3.7)
and (3.9). The coefficient matrix is Hx in both cases, so naturally a gain in
performance can be realized by computation of an LU factorization, which
can then be used twice.

3.3. Implementation of the Homotopy Algorithm

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

153

Again for efficiency, the problem H(x, t) = 0 is solved to a lower ac-
curacy along the path, and then when a possible solution is obtained at
t = 1, the “end game” is entered and the solutions are obtained to a greater
accuracy. Typically the maximum number of iterative improvements is in-
creased.

Having an environment such as Maple opens up the possibilities to use
automatic differentiation to calculate the higher order derivatives. Specif-
ically the derivatives are encoded as programs for which good complexity
estimates are known [4].

4. Application to some polynomial systems

The algorithms above were coded in Maple with a parameter that allowed
us to turn the third-order terms on and off. In comparing performance of
the codes, we can select between many different metrics. In complicated
systems such as Maple, there is a particular difficulty of separating the
efficiency of the mathematical method from the details of the programming.
For this reason, we have selected to test the average size of a step and the
number of iterative loops used by the corrector code.

We apply the code to the following simple problems: the intersection of
2 curves given by

x2 + y2 = 1, x+ 2y − 6 = 0 ; (4.1)

a univariate problem similar to the well-known Wilkinson polynomial

(

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

154

the iterative solver was called (abbreviated as Iters below). In all cases, the
third-order method used fewer steps and fewer iterations. These statistics
are presented in the table below, using N for second order and H for third
order.

Problem N-Time N-Steps N-Iters H-Time H-Steps H-Iters
Wilkinson5

2

.

8

s

2

.

p

s

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

156

The initial conditions corresponding to the known solutions

idata :=[seq(seq(seq({xr(0)=2*i-1+Re(sx),xi(0)=Im(sx),

yr(0)=2*j-1+Re(sy),yi(0)=Im(sy), zr(0)=2*k-1+Re(sz),zi(0)=Im(sz)},

k=0..1),j=0..1),i=0..1)]:

Loop through the data, and obtain the solution for each

for id in idata do

Construct the dsolve/numeric procedure

dsn := dsolve(dsys union id, numeric, implicit=true):

Obtain the solution at t=1 and print it.

sol := dsn(1);

print(evalf[7](

eval([x=xr(t)+I*xi(t),y=yr(t)+I*yi(t),z=zr(t)+I*zi(t)],sol)

));

end do:

The output from running this script is

[x = 1.384601 + 0.5873485 I,

y = -2.516459 - 0.1233784 I,

z = -1.181569 + 0.7662005 I]

[x = 1.041660 + 2.196067 I,

y = -0.1078828 - 3.715860 I,

z = 1.630095 - 1.988129 I]

[x = 0.1122859 + 0.3201893*10^(-6) I,

y = 0.1227375 + 0.1602351*10^(-6)I,

z = -0.8616124 - 0.3224805*10^(-7)I]

[x = 0.4493258 + 0.8280515*10^(-6)I,

y = 1.316899 - 0.7538583*10^(-6)I,

z = 1.685232 - 0.1398326*10^(-6)I]

[x = 1.384601 - 0.5873477 I,

y = -2.516459 + 0.1233783 I,

z = -1.181569 - 0.7661998 I]

[x = 1.041658 - 2.196065 I,

y = -0.1078817 + 3.715856 I,

z = 1.630094 + 1.988127 I]

[x = -2.656328 + 5.385065 I,

y = -1.330291 + 4.515593 I,

z = 1.681109 + 4.152297 I]

[x = -2.656328 - 5.385073 I,

y = -1.330290 - 4.515598 I,

z = 1.681113 - 4.152299 I]

The computation took around 1 second on a 1.5GHz machine. Of course
a Newton improvement could be done at the end to increase accuracy.
Evaluation of the original quadratic equations Eqn. (5.1) yields residuals
of magnitude less than 10−4. This reflects the working tolerances of the
default method (10−7). Tightening of these tolerances to 10−10 provides

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

157

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

158

Here Dx and Dy are the usual formal total derivatives so that Dxφ
2 =

(2ux + 1)uxx − ux = 0, etc. Thus we have 4 equations in the 6 unknowns
(u, ux, uy, uxx, uxy, uyy). Now regarded as a submanifold of J2, the dimen-
sion of V (R) satisfies dim V (R) ≤ 4 since we already have 2 obviously
independent PDEs φ1 = 0 and φ2 = 0, and dim J2 = 6. To check if V (R)
has components of dimension 4 in J2, we intersect it with a random 2 di-
mensional linear subspace of C6. This linear space is the solution set of 4
random linear equations of the form:

ψj := aj0+aj1u+aj2ux+aj3uy+aj4uxx+aj5uxy+aj6uyy = 0, (6.5)

where j = 1, 2, 3, 4 and the ajk are random complex floating point numbers.
The equations (6.5) together with those in (6.4) form a system of 8 equations
for 6 variables for the intersection of V (R) with this subspace. Following the

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

160

this problem does not occur (this is a generalization of the algebra-geometry
correspondence to PDE), and is achieved in the exact case for our example
by constructing representations for radicals of algebraic ideals occurring
in the computation. In the approximate case the interpolation dependent
methods play the same role. However constructing an interpolation-free
method in the higher multiplicity case remains an open problem, which is
important because of the higher complexity of the interpolation dependent
methods.

7. Acknowledgements

Two of the authors (GR and KH) thank Jan Verschelde for helpful discus-
sions. GR thanks Ilias Kotsireas, and Chris Smith for discussions.

References

1. E. L. Allgower, K. Georg. Numerical path following. In P. G. Ciarlet, J. L.
Lions, eds. Scientific Computing (Part 2), 3–203. Volume 5 of Handbook of
Numerical Analysis, North-Holland, 1997.

2. D. N. Bernstein. The number of roots of a system of equations. (Russian)
Functional Anal. Appl. 9(3) (1975), 183–185 (English Translation, 1976).

3. R. M. Corless, A. Galligo, I. S. Kotsireas, S. M. Watt. A geometric-numeric

November 27, 2003 18:9 WSPC/Trim Size: 9in x 6in for Proceedings ascm2003

161

11. I. S. Kotsireas. Homotopies and polynomial system solving I. Basic Princi-
ples. SIGSAM Bulletin 5(1) (2001), 19–32.

12. T. Y. Li. Numerical solution of multivariate polynomial systems by homo-

