


This norm has the following advantages.

(a) It allows us to evaluate partial derivatives of the norm
in terms of polynomial and series manipulations. These
can be used to express a sequence of least squares prob-
lems, whose solutions usually converge to a minimum
perturbation ||∆f || = ||f − g ◦ h||. The derivatives can
also be used for Newton’s method.

(b) Minimizing ‖∆f‖ gives a near-Chebyshev minimum on
the unit disk [13].

(c) It permits fast algorithms for the solution of subprob-
lems at each iteration.

The expression of ‖f‖ in the form (2) emphasizes the
importance of the size of the values of f(z) on the unit disk.
This highlights the need for the following assumptions re-
garding the formulation of the problem:

(a) The location of the origin has been chosen (thus making
explicit an implied assumption in previous numerical
polynomial algorithms),

(b) The scale of |z| has been chosen.

In particular, we assume that the problem context precludes
a change of variable by an affine transformation z → bz + a.

Remark. There is also a purely computational reason for
avoiding such transformations, as is set out in the next the-
orem.

Theorem 2.2. Shifting from z to z − a can amplify any
uncertainties in the coefficients of f by an amount as much
as (1 + |a|)n/

√
n + 1 in norm. This is exponential in n,

for any a 6= 0. Moreover, the relative uncertainties in each
coefficient can be amplified by arbitrarily large amounts.

In other words, such shifts are ill-conditioned.

Proof. By examining the condition of the matrix that de-
termines the Taylor coefficients of the shifted polynomial

fa(z) =

n∑
k=0

f (k)(a)

k!
(z − a)k ,

one quickly finds the worst case for perturbation in the 1-
norm: choose f(z) = zn. Then ‖f‖ = ‖f‖1 = 1, but

fa(z) =

n∑
k=0

(
n

k

)
(−a)kzk

and hence ‖fa‖1 = (1 + |a|)n. Since the 1- and 2-norms are
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setting is that f is not monic, so

f̃(z) =fn + fn−1z + fn−2z2 + · · · f0zm

=⇒ h̃(0)(z) = f1/m
n + hd−1z + · · · + h0zd

and for definiteness we choose the positive (real) root for
hd (recall that we scaled f so that ‖f‖ = 1 with leading
coefficient greater than 0).

On the quality of the initial approximation

Let hmin and gmin be the functions that minimize ‖∆f‖.
Further, let f + ∆fmin = gmin ◦ hmin . A bound showing the
quality of h(0) is given by the next theorem.

Theorem 3.1. There exists a constant K, depending on m
and on the leading coefficient of



Repeat steps 2 and 3 until sufficient accuracy is attained or
your patience is exhausted. When this method converges, it
converges linearly since it is just functional iteration (similar
to that discussed in [5]).

Essentially, we ignore the interactions between the
changes in h and the changes in g. By doing so, we for-



The normal equations (12) can be arranged to get

d∑
`=0

Tk`∆h` = bk , 0 ≤ k ≤ d ,

where

Tk` = [ zk−` ] g′(h(z)) g′(h(1/z))

bk = [ zk ] (f(z) − g(h(z)) g′(h(1/z)) .

This derivation allows for a very fast computation of the
entries in T through series manipulation. To solve stably
and efficiently such a system it is also necessary to know that
it is non-singular and positive definite as well as Hermitian
and Toeplitz. To see this, we observe that T factors as
T = B∗B, where B is an (n + d) × (d + 1) matrix with
Bk` = [zk]z`g′(h(z)). This is a lower triangular Toeplitz
matrix of full column rank when g′(h(z)) is non-zero, whence
B∗B is non-singular and positive definite.

Once we have computed a ∆h using this linear least-
squares formulation we may then update h := h + ∆h.
The entire process can then be iterated by re-linearizing
around this new h and again approximating a ∆h mini-
mizing ‖f − g(h + ∆h)‖. Since this nonlinear least-squares
problem is only a component in the entire solver it is not
clear that it is necessary to repeat this local process (for
fixed f and g) until convergence occurs. However, we have
seen examples in which substantial convergence is required
in this sub-problem for a globally minimal decomposition to
be obtained.

Computationally, each iteration of this nonlinear least-
squares solver has very low cost. Each system T can be
easily constructed using only series manipulations. T can
be constructed with O(n log2 n) operations using the series
manipulation algorithms of Brent & Kung [4] and an FFT
for polynomial multiplication. The solution to the system
can be obtained via the stable Toeplitz solvers of Trench [14]
using (d2) operations, or the fast and stable methods (for
positive definite matrices) [3, 12] which require O(d log2 d)
operations. In summary, each iteration requires O(n log2 n)
floating point operations.

5 NEWTON ITERATION

In this section we explore the direct use of Newton’s method
to solve the nonlinear minimization problem: find g, h ∈ R[z]

minimizing ‖g ◦ h − f‖2. We give an effective method of
computing the requisite derivatives analytically, and imple-
ment, test, and compare the method with the sequence of
linear least-squares problems of the earlier section.

We consider

Nf (g + ∆g, h + ∆h) = ‖f − (g + ∆g) ◦ (h + ∆h)‖2

with

∆h(z) =

d∑
`=0

∆h`z`, ∆g(z) =

m−1∑
`=0

∆g`z`.

Assume for the purpose of exposition that f , g, h, ∆f , ∆g,
and ∆h are all in R[z]; however z ∈ C. Lemma 2.1 is used
to compute Nf . Denoting the integrand of the integral for

Nf by If , we expand to second order in ∆g, ∆h.

If (g + ∆g,h + ∆h) = (g(h(z)) − f(z))(g(h(z̄)) − f(z̄))

+ g′(h(z̄))(g(h(z)) − f(z))∆h(z̄)

+ (g(h(z)) − f(z))∆g(h(z̄))

+ g′(h(z))g′(h(z̄))∆h(z)∆h(z̄)

+ (∆g(h(z))∆g(h(z̄)))

+ g′(h(z̄))∆g(h(z))∆h(z̄)

+ (g(h(z)) − f(z))∆g′(h(z̄))∆h(z)

+
1

2
g′′(h(z̄))(g(h(z)) − f(z))∆h2(z̄)

+ c. c. ,

where c. c. indicates the complex conjugate of all non-real
summands.
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small eigenvalues, of course, may be greatly perturbed in
a relative sense, but, as we will see below, to stabilize the
Newton step we will ignore eigenvalues that are too small.

We write A = QΛQt, where Λ is the usual diagonal
matrix of eigenvalues and Q is orthonormal. Now substitute
x = Qy in (13) to get

Nf + btx + xtAx =Nf + btQy + ytQtAQy

=btQy + ytΛy.

The constant Nf can be dropped. Denoting btQ = −2pt,
we have

btQy + ytΛy = − 2p1y1 − 2p2y2 − · · · − 2pmym

+ λ1y2
1 + λ2y



Least Squares Iteration 2

g = 0.006265045950 + 0.


