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We show that many functions containing the Lambert W function are Stieltjes functions. We
extend the known properties of the set of Stieltjes functions and also prove a generalization
of a conjecture of Jackson, Procacci & Sokal. In addition, we consider the relationship of
functions of W to the class of completely monotonic functions and show that W is a complete
Bernstein function.
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1. Introduction

The Lambert W function is the multivalued inverse of the mapping W 7→ WeW .
The branches, denoted by Wk (k ∈ Z), are defined through the equations [11]

∀z ∈ C; Wk(z) exp(Wk(z)) = z ; (1.1)

Wk(z) ∼ lnk z as ℜz → ∞ ; (1.2)

where lnk z = ln z+2�ik, and ln z is the principal branch of natural logarithm [14].
This paper considers only the principal branch k = 0, which is the branch that
maps the positive real axis onto itself, and therefore we shall usually abbreviate
W0 as W herein.
Many functions of W are members of a number of function classes, specifically,
the classes of Stieltjes functions, Pick functions and Bernstein functions, including
subclasses Thorin-Bernstein functions and complete Bernstein functions. This is
mainly due to the fact that W is a real symmetric function, in the terminology of
[5, p. 160] (see also [23, p. 155]), with positive values on the positive real line. The
mentioned classes are of particular interest because they admit certain integral
representations. A description of the classes can be found in a review paper [8]
and a recently published book [19]. In this paper we show that many functions
containing W are Stieltjes functions. Also, we extend the properties of the set of
Stieltjes functions in Sections 1.2 and 4. In addition, we give one more proof of the
fact [15] that W function is Bernstein. Moreover, we show that W is a complete
Bernstein function.
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The classes of Stieltjes functions and Bernstein functions are intimately con-
nected with the class of completely monotonic functions, which have many ap-
plications in different fields of science; a list of appropriate references is given in
[2]. Therefore we shall also study the complete monotonicity of some functions
containing W .
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For the case of purely imaginary z, i.e. t = 0, the functions u = u(s) and v = v(s)
obey

u = v tan v; (1.11)

s = s(v) = v sec(v)ev tan v : (1.12)

The derivative of W (z) is given by

W ′(z) =
W (z)

z(1 +W (z))
: (1.13)

Further, the following lemma will be used below.

Lemma 1.1 Function ℑW (−t) is nonnegative and bounded on the real line and
continuously differentiable for t ̸= 1=e. Specifically, it is zero for t ∈ (−∞; 1=e] and
a monotone increasing function for t ∈ (1=e;∞) so that ℑW (−t) → � as t → ∞.
Correspondingly, the derivative dℑW (−t)=dt is zero for t < 1=e and positive for
t > 1=e. In addition, dℑW (−t)=dt = o(1=t) as t → ∞.

Proof Owing to the above properties of function ℑW (t) (see (1.3)), the function
ℑW (−t) is nonnegative and bounded for real t and ℑW (−t) → � as t → ∞.
The function is also continuously differentiable everywhere except t = 1=e. We set
v(t) = ℑW (t) and compute the derivative v′(t); it is conveniently found by taking
the imaginary part of (1.13) and using (1.9)

v′(t) =
A(v(t))

t
; A(v) =

v

v2 + (1− v cot v)2
: (1.14)

Then the derivative dℑW (−t)=dt = A(v(−t))=t, which implies that it is zero for
t < 1=e and positive for t > 1=e as v(t) = 0 for t > −1=e and v(t) > 0 for t < −1=e.
It remains to justify the estimation of the derivative dℑW (−t)=dt at large t but
it immediately follows from the two facts that v(−t) → � as t → ∞ and that
A(v)→ 0 as v → �. �

1.2. Stieltjes functions

We now review the properties of Stieltjes functions, again concentrating on results
that will be used in this paper. We must note at once that there exist several
different definitions of Stieltjes functions in the literature, and here we follow the
definition of Berg [8].

Definition 1.2 A function f : (0;∞) → R is called a Stieltjes function if it
admits a representation

f(x) = a+

∫ ∞

0

d�(t)

x+ t
(x > 0); (1.15)

where a is a non-negative constant and � is a positive measure on [0;∞) such that∫∞
0 (1 + t)−1d�(t) < ∞.

A Stieltjes function is also called a Stieltjes transform [9, p. 127]. Except in
Section 2.3 below, the term Stieltjes function will here always refer to definition
(1.15).
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where the first term can be included into the integral since a ≥ 0 and 1=x is a
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ment integrals
∫ e

0 tn dΦ(t) (n = 0; 1; 2; : : : ) exist. This remark is useful for justifying
the use of Padé approximants for the evaluation of W (z) based on the theory in
[5, Ch. 5].

Remark 4 An existence of representation (2.5) also follows from Theorem 1.4.
Indeed, for function f(z) =W (z)=z conditions (1.20) read as

ℑW (−1=z) ≥ 0 and sup
1<y<∞

|yW (i=y)| < ∞ :

The first condition is satisfied by (1.4) because ℑ(−1=z) and ℑz are of the same
sign. To verify the second condition we set W (i=y) = u +
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0 ≤ � ≤ 1. Then apply (v) to the function in the statement (a) with c = 1
and g(x) = xβ to get b(x) = 1+W (xβ) ∈ S. Finally apply (vi) to a(x) and
b(x).

(i) Apply (xii) to the function in the statement (c) with � = −1 using (1.7)
(or apply (x) to W (x)=x).

(j) Apply (x) (or (xii)) to the result of application of (iv) (respectively (v)) to
the function in the statement (d) with c = 1 and g(x) = xβ (−1 ≤ � ≤ 0).

�

Corollary 2.3 The derivative W ′(x) is a Stieltjes function.

Proof The proof follows from statement (d) of Theorem 2.2, taken with c = 1,
together with formula (1.13). �

The next theorem proves and generalizes a conjecture in [13].

Theorem 2.4 The following functions are Stieltjes functions for each fixed real
a ∈ (0; e]:

F0(z) =
z

1 + z
W (a(1 + z))= [W (a(1 + z))− W (a)]2 ; (2.6)

F1(z) = zW

(
a

1 + z

)/[
W (a)− W

(
a

1 + z

)]2

: (2.7)

Proof We first apply Theorem 1.5 to the function F0(z). To do so we note that
F0(z)
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and (v) t = a. We start with the case (i). Since V (z) is continuous (from above) on
the real line z = x ∈ R, the expression under the limit sign in (2.9) is continuous
in domain {(t; s)|t ∈ R; s > 0}. Then using relation (1.9) we obtain

H(t) =
v

[(b+ v cot v)2 + v2]2

(
v2

sin2 v
− b2

)(
1− a

t

)
:

We have v ∈ (0; �) for t ∈ (−∞;−1=e), hence v2= sin2 v > 1. (0

=eH(t(=eHanrm65 nsform65 3(using)sorm65 Td1.11(anrm65 nsform65 Td1.12(anrm65  )-3365 292(th365 Tdiii 1nrm65  t1.464aisorm65 notorm65 difficultorm65 )oen)65 sh tin0nH(t t
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representation are not treated as equivalent (compare definitions [19, p. 11] and
[19, p. 55]). By these definitions W (z) has a Stieltjes representation (which is the
result of multiplication of the representation (2.3) by z) though it is not a Stieltjes
function.

3. Completely monotonic functions

We denote by CM the set of all completely monotonic functions, which are defined
as follows [3].

Definition 3.1 A function f : (0;∞) → R is called a completely monotonic
function if f has derivatives of all orders and satisfies (−1)nf (n)(x) ≥ 0 for x > 0,
n = 0; 1; 2; :::

The set of Stieltjes functions is contained in the set of completely monotonic
functions, and thus all of the functions listed in Theorem 2.2 are completely mono-
tone. The set CM is a convex cone containing the positive constant functions; a
product of completely monotonic functions is again completely monotone [9, p. 61].
By Bernstein’s theorem [9, Theorem 9.3], a function f ∈ CM if and only if it is of
the form

f(x) =

∫ ∞

0
e−xξd�(�) (x > 0); (3.1)

where � is an uniquely determined positive measure on [0;∞). Completely mono-
tonic functions are in turn connected with the set of Bernstein functions denoted
by B.

Definition 3.2 [8, Definition 5.1] A function f : (0;∞) → [0;∞) is called a
Bernstein function if it is C∞ and f ′ is completely monotonic.

Since W ′ ∈ S ⊂ CM, W is a Bernstein function. The same fact has been es-
tablished in [15] in a different way, based on the properties of the polynomials
appearing in the higher derivatives of W .
A Bernstein function f(x) admits the Lévy-Khintchine representation

f(x) = a+ bx+

∫ ∞

0

(
1− e−xξ

)
d�(�) ; (3.2)

where a; b ≥
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(a) xλW (x) (x > 0; � ≤ −1).
(b) xλWα(xβ)

[
1 +W (xβ)

]γ
(x > 0; �;  ≥ 0; −1 ≤ � ≤ 0; � ≤ 0).

(c) xλWα(x−β)
[
1 +W (x−β)

]γ
(x > 0; �;  ≤ 0; −1 ≤ � ≤ 0; � ≤ 0).

(d) 1 − x−αβγWαγ(xβ)[1 +W (xβ)]γ−1 (x > 0; 0 ≤ � ≤ 1; −1 ≤ � ≤ 0; 0 ≤
 ≤ 1).

Proof

(a) Since W (x)=x ∈ S ⊂ CM and xα ∈ CM for � ≤ 0, the function xλW (x)
(� ≤ −1) is a product of two completely monotonic functions and the
statement (a) follows.

(b) Take function fα(x) = x−α ∈ CM (x > 0; � ≥ 0) and functions g(x) =
1=W (xβ) and h(x) = 1=(1+W (xβ)) where −1 ≤ � ≤ 0. Since 1=g ∈ S and
1=h ∈ S by Theorem 2.2 (f) with c = 0 and c = 1 respectively, by Lemma
3.3 we have fα(g(x)) = g−α(x) ∈ CM and fγ(h(x)) = h−γ(x) ∈ CM
( ≥ 0). Substituting functions g(x) and h(x) in the power functions and
taking a product of obtained completely monotonic functions with xλ ∈
CM (x > 0; � ≤ 0), the statement (b) follows.

(c) Consider function fλ(x) = xλ ∈ CM (x > 0; � ≤ 0) and functions g(x
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where the limit of f(x) at x = 0 (from the right) is assumed to be finite. Also if f
is bounded and f ∈ CB, there exists a bounded g ∈ S with limx→∞ g(x) = 0 such
that

f(x) = f(0) + g(0)− g(x) : (4.2)

In addition, [19, Theorem 7.3] and [19, Theorem 6.2(i),(ii)] establish

f ∈ CB ⇔ 1=f ∈ S \ {0} ; (4.3)

f ∈ CB ⇔ f(x)=x ∈ S : (4.4)

We note at once that the statement (4.3) together with that 1=W ∈ S (by The-
orem 2.2(a) with c = 0) immediately results in a conclusion that W is a complete
Bernstein function.
Now we go back to the properties of the set S listed in Section 1.2 to prove the
last three properties therein. Let f ∈ S \ {0}.
(x) Apply sequentially (vii), (4.1), (4.3), (i), to obtain fα ∈ S (0 ≤ � ≤ 1) ⇒

fα(0) − fα(x) ∈ CB ⇒ g(x) = [fα(0)− fα(x)]−1 ∈ S ⇒ 1=g(1=x) = fα(0) −
fα(1=x) ∈ S;
(xi) Apply sequentially (4.1), (4.3), (ii), to obtain f(0) − f(x) ∈ CB ⇒ g(x) =
[f(0)− f(x)]−1 ∈ S ⇒ 1=(xg(x)) = (f(0)− f(x))=x ∈ S ⇒ (1− f(x)=f(0))=x ∈ S;
(xii) By (vii), fα ∈ S (0 ≤ � ≤ 1). Suppose that limx→0 f(x) = b ≤ ∞ and
limx→∞ f(x) = c where 0 < c < ∞. Then b−α ≤ f−α ≤ c−α, i.e. f−α is bounded.
In addition, f−α ∈ CB by (4.3). Therefore the statement (4.2) can be applied, i.e.
there exists a bounded function g ∈ S; limx→∞ g(x) = 0 such that we can write
g(x) = g(0)+b−α−f−α(x). Taking the last equation in the limit x → ∞ we obtain
g(0) + b−α = c−α, hence g = c−α − f−α
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