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SUMMARY

The two-dimensional flow around a eylinder that is near a plane wall is calculated
assuming that the Reynolds number for the flow is small. For a cylinder transiating
parallel to the wall, the torque on the cylinder is zero; similarly, for a rotating
cylinder the force is zero. These results, which are surprising when compared with
corresponding ones for a sphere, are proved and then examined further using
lubrication theory. We also consider motion perpendicular to the wall, allowing us to
discuss the behaviour of a cylinder falling down an inclined plane. In addition
streamline patterns are described.
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Fro 1 _Bivolar coordinates (. BY. o > v B. > Ra.

are bounded externally or that decay sufficiently rapidly at infinity is

=R | m (e} @)

where

Xo= Ag cosh a + Bya cosh & + Cy sinh « + Dya sinh a,

x1=A;cosh2a+ B, +C sinh2a+ D, aq,

Xn = A, cosh(n+1Da+ B, cosh (n~1)a+C, sinh (n+1)a+D, sinh(n—1)e.
The constants are complex {except for n=0), and not all independent,

because to obtain a single-valued pressure field, we must set Re {D,} = —B,;
the pressure field is then

2 .
p = f Im [e*‘B{DO sinh a + (By+ D;) cosh a}+

G,=(n=)A,1+B,)~(n+1){A, +B,.y),
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The Cartesian components of the force on the surface a = a, are

Fi+F,j= J‘fr.n ds = 4mpDgi — 4 Im {D 4. (3)

from the wall is d, then the cylinder s described by o = a,, where
d = a coth a;, r=acosecha, and a?=d*-r%

2. Particular sointions
2.1 Cylinder rotating next to a plane wall
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F, = —4muV/(a, ~tanh o)) = —4mpVillog {{d + a)/r} — a/d ],
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FiGg. 2. The streamline pattern for low-Reynolds-number flow around a
cylinder rotating next to a plane wall, plotted using a computer graphics
package.

flowing towards this point, forcing the fluid coming from infinity to turn
around and flow over the cylinder. The possible ways in which fluid can turn
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possible if two streamlines, rather than one, met the boundary at the point
in question (cf. (8), Fig. 2b). A check of the derivatives of ¢ at this point
shows that such is not the case.

The streamlines for a typical case are shown in Fig. 2. The flux of fluid
over the cylinder is finite and equals —2wr” to the right. Streamlines meet
the plane at x = +a = +(d®— )2 If the cylinder touches the wall, we know

!




134 D.J. JEFFREY AND Y. ONISHI

Fic. 3. Flow in a corner when one wall siides parallel to itself and there is a
line source of fluid at the vertex.

3.2 The other flows

The streamlines for the other two flows do not vary qualitatively from the
streamlines for the special cases of line forces, and these have been given in
(1. We do note, though, that for the case of motion parallel to the wall, it
has been shown in (4) that, in the frame of reference in which the cylinder is
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If we suppose that d = r{1+¢€), i.e. that the smallest gap width is er, we
can analyse the flow in the gap between cylinder and plane using lubrication
theory, and obtain further insight into the results of section 2. We define
stretched coordinates (X, Y) by
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while the boundary conditions w.n=0 and u,1= wr become
ug=1 and v,=X on Y=H

The solutions for u. and P that make P—= 0 ag X — o ara

P=-2X/H* and u,=3P'Y(Y-H)+Y/H.

Thus the rotation sets up a pressure field which adds a Poiseuille flow to the
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P=-5/H?* and u,=3iP'Y(Y-H).

The force 15
= MV{J’J PdX =-12muV(2e) *+ Ofe™),

so that actually the next term in the approximation is also singular.
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Thus the sphere rotates four times slower than one’s everyday ideas of
rolling would predict. If the centre of the sphere is at (x, 7 +7e 0), then

e=gyexp (~ki)+ O(1™®*) and x, =2rtan 8 log (ki)+ O(1),

where k = mg cos 8/6mur” and €, is a notional initial value. The fact that X,
is logarithmic in time for both sphere and cylinder is a surprising coinci-
dence.
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