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Abstract
Three topics are discussed that relate to the teaching of linear algebra using computers
(here the term computers includes calculators). The first topic is the variation in notation
and



The major use of computers has been to assist students with









From the point of view of linear algebra, these operations are not important, because they
are not matrix operations, but for teachers of introductory numerical analysis courses, the
notation is the source of endless debugging problems for the students. For professionals, the
compactness of this notation is a great convenience.

In Maple, the elementwise of lineaorthe



It can also be argued that we should look to the future. If the



3.3 Never learning the best method

A book on canoeing [5] recommends that the first paddling stroke to teach students is the
backstroke,

because we note a tendency to revert to the most familiar stroke when flustered.

Many readers will have heard stories of students graduating and going to work in industry, and
then applying mathematics from their undergraduate textbooks. Perhaps they try solving 100
equations in 100 unknowns using Cramer’s rule, or searching for the eigenvalue of a large matrix
by trying to solve its characteristic polynomial. With today’s arbitrary precision software, they






non-square matrix produced an error message; in MATLAB 6 (release 12), this is no longer the
case, but Mathematica and the HP still insist on an invertible matrix.
In fact, any rectangular matrix A has the Turing factors

PA=LDUR .

Here, the R matrix is the unique reduced row-echelon form of A. The matrix P is a precondi-
tioning matrix; it is usually a permutation matrix, but it can be a more general matrix. For
example, the standard software package LAPACK uses row and column equilibration (routines
xGESVX) and this can be described using preconditioning matrices.

4.2 What can we do with this?

We return to the eigenvalue problem above and use Turing factoring:
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Notice the rather useless row-echelon form at the end, and notice that the characteristic
polynomial has appeared naturally in the D matrix. Students could be taught the simple
rule “always check the cases det D = 0 separately”, but it is rewarding to understand where
this rule comes from.

The importance of det D = 0 comes because we are interested in special cases, and special
cases are often points of discontinuity; indeed, this is why they are interesting and considered

special. So we ask about the continuity properties of Turing factoring.

Consider the RREF of the matrix A(k) = (1) 2 as the parameter £ passes through 0.
The RREF is the identity I, except for a sudden, discontinuous change at £ = 0. Linear algebra
courses do not usually discuss the limit of a matrix, but under any reasonable definition, the
limit of RREF(A) as & — 0 must be the unit matrix. So we have lim;_,o RREF(A) = I # A(0).
Under any definition of continuity, the RREF of A is discontinuous at k = 0.

Definition. A matrix A(z) is continuous at = = a if each of its elements is continuous at
T =a.

Once we become accustomed to thinking of (interesting) special cases as discontinuities,
we can frame the following theorem.
Theorem: Let A(z) be a matrix depending upon one or more variables or parameters z,
and let A be continuous at a point z = a. For any fixed z, let A(z) have the Turing factoring
given by P(x)A(z) = L(z)D(x)U(x)R(x). If det D(z) # 0 in some neighbourhood of z = a,
then R(x), L(z), D(x), U(z) are all continuous at = a and moreover P(z) may be taken
constant in a neighbourhood of z = a.

This theorem is proved in [3] and means two things.

e A CAS can give an RREF which contains visible failure built in. Places where an
RREF might fail are no longer invisible because of the definition.

e The discontinuity information is collected in a single place, namely, along the diagonal
of D.



To return to the eigenvalue problem, the Turing factors of a matrix A — AI, will always
lead to a diagonal matrix D in which the diagonal entries are

n (A)ap2(>‘)/pl(>‘)7 s 7pn(A)/pn—1(A)

where pi(A) is a polynomial of degree k, and in the last entry, p,(A) is the characteristic
polynomial. Thus, det D = p,(\) and only the roots of the characteristic polynomial are special
cases. For some matrices, a fraction py/pr_1 might simplify; this would simply mean that a
preliminary splitting of the characteristic polynomial had been found during the computation.

4.3 The benefits

The immediate benefit to the teacher of Turing factoring is the combining together of row
reduction and LU factoring. If LU factoring was not previously in the course material, then it
comes along at no extra cost to the student. A common objection to Turing factoring is that it is
“a bit rich” for beginning students. Its computation also threatens a great deal of computation.
However, the point of computers is exactly to take over the burden of computation. Provided
students know what Turing factors are, computer algebra systems can easily obtain them for
the student.

The immediate benefit to the system designer is that a mechanism becomes available for
returning special case information back to the user. This obviates the need to develop new
user interfaces that allow the passing back to the user of proviso information. The benefit to
the student is a gentle introduction to one of the most powerful ideas of modern linear algebra:
factoring.
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