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Abstra
t

Three topi
s are dis
ussed that relate to the tea
hing of linear algebra using 
omputers

(here the term 
omputers in
ludes 
al
ulators). The �rst topi
 is the variation in notation

and



The major use of 
omputers has been to assist students with







From the point of view of linear algebra, these operations are not important, be
ause they

are not matrix operations, but for tea
hers of introdu
tory numeri
al analysis 
ourses, the

notation is the sour
e of endless debugging problems for the students. For professionals, the


ompa
tness of this notation is a great 
onvenien
e.

In Maple, the elementwise of lineaorthe



It 
an also be argued that we should look to the future. If the



3.3 Never learning the best method

A book on 
anoeing [5℄ re
ommends that the �rst paddling stroke to tea
h students is the

ba
kstroke,

be
ause we note a tenden
y to revert to the most familiar stroke when 
ustered.

Many readers will have heard stories of students graduating and going to work in industry, and

then applying mathemati
s from their undergraduate textbooks. Perhaps they try solving 100

equations in 100 unknowns using Cramer's rule, or sear
hing for the eigenvalue of a large matrix

by trying to solve its 
hara
teristi
 polynomial. With today's arbitrary pre
ision software, they





non-square matrix produ
ed an error message; in Matlab 6 (release 12), this is no longer the


ase, but Mathemati
a and the HP still insist on an invertible matrix.

In fa
t, any re
tangular matrix A has the Turing fa
tors

PA = LDUR :

Here, the R matrix is the unique redu
ed row-e
helon form of A. The matrix P is a pre
ondi-

tioning matrix; it is usually a permutation matrix, but it 
an be a more general matrix. For

example, the standard software pa
kage LAPACK uses row and 
olumn equilibration (routines

xGESVX) and this 
an be des
ribed using pre
onditioning matri
es.

4.2 What 
an we do with this?

We return to the eigenvalue problem above and use Turing fa
toring:
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Noti
e the rather useless row-e
helon form at the end, and noti
e that the 
hara
teristi


polynomial has appeared naturally in the D matrix. Students 
ould be taught the simple

rule \always 
he
k the 
ases detD = 0 separately", but it is rewarding to understand where

this rule 
omes from.

The importan
e of detD = 0 
omes be
ause we are interested in spe
ial 
ases, and spe
ial


ases are often points of dis
ontinuity; indeed, this is why they are interesting and 
onsidered

spe
ial. So we ask about the 
ontinuity properties of Turing fa
toring.

Consider the RREF of the matrix A(k) =

�

1 0

0 k

�

as the parameter k passes through 0.

The RREF is the identity I, ex
ept for a sudden, dis
ontinuous 
hange at k = 0. Linear algebra


ourses do not usually dis
uss the limit of a matrix, but under any reasonable de�nition, the

limit of RREF(A) as k ! 0 must be the unit matrix. So we have lim

k!0

RREF (A) = I 6= A(0).

Under any de�nition of 
ontinuity, the RREF of A is dis
ontinuous at k = 0.

De�nition. A matrix A(x) is 
ontinuous at x = a if ea
h of its elements is 
ontinuous at

x = a.

On
e we be
ome a

ustomed to thinking of (interesting) spe
ial 
ases as dis
ontinuities,

we 
an frame the following theorem.

Theorem: Let A(x) be a matrix depending upon one or more variables or parameters x,

and let A be 
ontinuous at a point x = a. For any �xed x, let A(x) have the Turing fa
toring

given by P (x)A(x) = L(x)D(x)U(x)R(x). If detD(x) 6= 0 in some neighbourhood of x = a,

then R(x), L(x), D(x), U(x) are all 
ontinuous at x = a and moreover P (x) may be taken


onstant in a neighbourhood of x = a.

This theorem is proved in [3℄ and means two things.

� A CAS 
an give an RREF whi
h 
ontains visible failure built in. Pla
es where an

RREF might fail are no longer invisible be
ause of the de�nition.

� The dis
ontinuity information is 
olle
ted in a single pla
e, namely, along the diagonal

of D.



To return to the eigenvalue problem, the Turing fa
tors of a matrix A � �I, will always

lead to a diagonal matrix D in whi
h the diagonal entries are

p

1

(�); p

2

(�)=p

1

(�); : : : ; p

n

(�)=p

n�1

(�)

where p

k

(�) is a polynomial of degree k, and in the last entry, p

n

(�) is the 
hara
teristi


polynomial. Thus, detD = p

n

(�) and only the roots of the 
hara
teristi
 polynomial are spe
ial


ases. For some matri
es, a fra
tion p

k

=p

k�1

might simplify; this would simply mean that a

preliminary splitting of the 
hara
teristi
 polynomial had been found during the 
omputation.

4.3 The bene�ts

The immediate bene�t to the tea
her of Turing fa
toring is the 
ombining together of row

redu
tion and LU fa
toring. If LU fa
toring was not previously in the 
ourse material, then it


omes along at no extra 
ost to the student. A 
ommon obje
tion to Turing fa
toring is that it is

\a bit ri
h" for beginning students. Its 
omputation also threatens a great deal of 
omputation.

However, the point of 
omputers is exa
tly to take over the burden of 
omputation. Provided

students know what Turing fa
tors are, 
omputer algebra systems 
an easily obtain them for

the student.

The immediate bene�t to the system designer is that a me
hanism be
omes available for

returning spe
ial 
ase information ba
k to the user. This obviates the need to develop new

user interfa
es that allow the passing ba
k to the user of proviso information. The bene�t to

the student is a gentle introdu
tion to one of the most powerful ideas of modern linear algebra:

fa
toring.
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