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Abstrat

Three topis are disussed that relate to the teahing of linear algebra using omputers

(here the term omputers inludes alulators). The �rst topi is the variation in notation

and



The major use of omputers has been to assist students with







From the point of view of linear algebra, these operations are not important, beause they

are not matrix operations, but for teahers of introdutory numerial analysis ourses, the

notation is the soure of endless debugging problems for the students. For professionals, the

ompatness of this notation is a great onveniene.

In Maple, the elementwise of lineaorthe



It an also be argued that we should look to the future. If the



3.3 Never learning the best method

A book on anoeing [5℄ reommends that the �rst paddling stroke to teah students is the

bakstroke,

beause we note a tendeny to revert to the most familiar stroke when ustered.

Many readers will have heard stories of students graduating and going to work in industry, and

then applying mathematis from their undergraduate textbooks. Perhaps they try solving 100

equations in 100 unknowns using Cramer's rule, or searhing for the eigenvalue of a large matrix

by trying to solve its harateristi polynomial. With today's arbitrary preision software, they





non-square matrix produed an error message; in Matlab 6 (release 12), this is no longer the

ase, but Mathematia and the HP still insist on an invertible matrix.

In fat, any retangular matrix A has the Turing fators

PA = LDUR :

Here, the R matrix is the unique redued row-ehelon form of A. The matrix P is a preondi-

tioning matrix; it is usually a permutation matrix, but it an be a more general matrix. For

example, the standard software pakage LAPACK uses row and olumn equilibration (routines

xGESVX) and this an be desribed using preonditioning matries.

4.2 What an we do with this?

We return to the eigenvalue problem above and use Turing fatoring:
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Notie the rather useless row-ehelon form at the end, and notie that the harateristi

polynomial has appeared naturally in the D matrix. Students ould be taught the simple

rule \always hek the ases detD = 0 separately", but it is rewarding to understand where

this rule omes from.

The importane of detD = 0 omes beause we are interested in speial ases, and speial

ases are often points of disontinuity; indeed, this is why they are interesting and onsidered

speial. So we ask about the ontinuity properties of Turing fatoring.

Consider the RREF of the matrix A(k) =

�

1 0

0 k

�

as the parameter k passes through 0.

The RREF is the identity I, exept for a sudden, disontinuous hange at k = 0. Linear algebra

ourses do not usually disuss the limit of a matrix, but under any reasonable de�nition, the

limit of RREF(A) as k ! 0 must be the unit matrix. So we have lim

k!0

RREF (A) = I 6= A(0).

Under any de�nition of ontinuity, the RREF of A is disontinuous at k = 0.

De�nition. A matrix A(x) is ontinuous at x = a if eah of its elements is ontinuous at

x = a.

One we beome austomed to thinking of (interesting) speial ases as disontinuities,

we an frame the following theorem.

Theorem: Let A(x) be a matrix depending upon one or more variables or parameters x,

and let A be ontinuous at a point x = a. For any �xed x, let A(x) have the Turing fatoring

given by P (x)A(x) = L(x)D(x)U(x)R(x). If detD(x) 6= 0 in some neighbourhood of x = a,

then R(x), L(x), D(x), U(x) are all ontinuous at x = a and moreover P (x) may be taken

onstant in a neighbourhood of x = a.

This theorem is proved in [3℄ and means two things.

� A CAS an give an RREF whih ontains visible failure built in. Plaes where an

RREF might fail are no longer invisible beause of the de�nition.

� The disontinuity information is olleted in a single plae, namely, along the diagonal

of D.



To return to the eigenvalue problem, the Turing fators of a matrix A � �I, will always

lead to a diagonal matrix D in whih the diagonal entries are
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where p

k

(�) is a polynomial of degree k, and in the last entry, p

n

(�) is the harateristi

polynomial. Thus, detD = p

n

(�) and only the roots of the harateristi polynomial are speial

ases. For some matries, a fration p

k

=p
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might simplify; this would simply mean that a

preliminary splitting of the harateristi polynomial had been found during the omputation.

4.3 The bene�ts

The immediate bene�t to the teaher of Turing fatoring is the ombining together of row

redution and LU fatoring. If LU fatoring was not previously in the ourse material, then it

omes along at no extra ost to the student. A ommon objetion to Turing fatoring is that it is

\a bit rih" for beginning students. Its omputation also threatens a great deal of omputation.

However, the point of omputers is exatly to take over the burden of omputation. Provided

students know what Turing fators are, omputer algebra systems an easily obtain them for

the student.

The immediate bene�t to the system designer is that a mehanism beomes available for

returning speial ase information bak to the user. This obviates the need to develop new

user interfaes that allow the passing bak to the user of proviso information. The bene�t to

the student is a gentle introdution to one of the most powerful ideas of modern linear algebra:

fatoring.
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