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Abstract

A new procedure for finding exact travelling wave solutions to the modifled Camassa-
Holm and Degasperis-Procesi equations is proposed. It turns out that many new
solutions are obtained. Furthermore, these solutions are in general forms, and many
known solutions to these two equations are only special cases of them.
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1 Introduction

For the function u(x;t), the Camassa-Holm (CH) equation
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solutions. The name \peakon", which means travelling wave with slope dis-
continuities, is used to distinguish them from general travelling wave solutions
since they have a corner at the peak of height c, where c is the wave speed.

Since the CH and DP equations have rich structures, Wazwaz [11] suggested
a modifled form of the Camassa-Holm equation (called mCH)

Ut T Uxxt + 3U2ux = 2UyUyx + Ulyxy (€))
and a modifled form of the Degasperis-Procesi equation (called mDP)
Ut T Usxt + 4UPUy = 3UyUyy + Ul 4)

They are obtained by changing the nonlinear convection term uuy in equations



of the procedure are presented and discussed. In Section 3, new travelling
wave solutions to the mCH equation are obtained. In Section 4, new travelling
wave solutions to the mDP equation are obtained. Finally, in Section 5, some
technical explanations for the procedure are given.

2 The procedure

The proposed procedure is based on the tanh method [20{23]. We select a list
of functions instead of just tanh for finding travelling wave solutions. The list
of functions we choose is: [rational, exp, csch, sech, tanh, csc, sec, tan, cn, sn],
where cn and sn are Jacobi elliptic functions.

The main steps of the procedure are as follows, where pde is the mCH equation
(3) or the mDP equation (4), and T is one of the functions in the list above.

S1 Substituting u(x;t) = U(-), where - = ,1X + ,,t, into pde gives an ODE
ode with dependent variable U(-). The reason why we use - = ,;X + ,,t
instead of - = x + ,t will be explained in Section 5.

S2 Find the balancing number m of ode which is the highest exponent in
T = f(-) obtained by substituting U(-) = T™ into ode and then balancing
the highest degree terms of T. First, we determine the degree of each term
in ode with respect to T. Since the degree of dPU(-)=d-P with respect to T
is m+p and the degree of U(-)? with respect to T is gm, we obtain a list of

the degree with maximum value of ¢ and the degree with maximum value
of d, and then by equatilgg them we obtain the balancing number m.

S3 Substituting U(-) = L., &T' into ode and eliminating the common
denominator gives an equation. It is easily seen that for every function f
in the function list above, any order derivative of,f(-) with respect to -
is either a polynomial in f(-) or of the form “*" j, where ““ and j are

polynomials in f(-). Therefore, the resulting equation is of the form

T+t =0 5)

where *;“* and j are polynomials in f(-).

S4 Setting all the coe—cients of the difierent powers of T in * and “* of (5)
to zero gives a system of polynomial equations.

S5 Solving the system of polynomial equations leads to the determination of

S6 Substituting the solutions obtained into U(-) = ETm a;T' gives the
travelling wave solutions of f type.

As an explanation of the procedure, let  be the function csc, and pde be the
mCH equation (3).






3,1a1@% j 10 ,,%aa; = 0;

In step S5, solving the system above leads to the following solution:

a;2=0;, a;1=0;, ay=ap a =0;

a :iéi230+p1i3aoi26102;

.1 =ir'ii2i4ao+2p1i2aoi2aoz;_ (9)
2 =3 Gi2i4ao+2p1i230i261023

+

3 i2iday+2 1 2a 1 2a0a0:

Finally in step S6, substituting the solution (9) into (7) gives a csc type solu-
tion to the mCH equation which is the solution ug(x;t) in Section 3.

3 Solutions to the mCH equation

The procedure in Section 2 has been implemented by minor modiflcation to the
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fi= 1+2k+p1 i2kij2k?
411p2f' Bk j fi):

Tt Three tanh/coth type solutions:
|

us () =k + — fitanh? — Plix+-t
1 12 .

1 p_. -
Us (X; t) = K+ = ficoth? — Pix+-t ;
18 12
1 a 1

. 2 19 ~ 1 2 £l ~t .
u7(x,t):k+§flcoth 8 fix+ "t +§fltanh 3 fix+ "t ; (16)

(14)

(15)

where

fi=512i24k+6p452ki2k2;
fl=42j4k+2 18k ijs8k?
T = L p1:|(27k+f|)

108

._14 _
== fl (12K + fl):

T One csc type solution and one sec type solution::

il

. 1P
ug (X; t) =k + fi csc? 7p2f|x+ t
4 1T

Ug (X; t) =k + fi sec? ipﬁx+ t

(17)

(18)

where

52k+p1 i2ki2k?

2fi (3k + fi) :

fi=j1
P

-b\l—‘—l

T Three tan/cot type solutions:
1, 1p,. m
Ui (X t) =k + —ficot? — fix+"t ;
18 12
1. 1 p,. Ll
ui (X t)=k+ —fitan®> — fix+"t ;
18 q

P (19)

1 (20)

a_
U (X;t) =k + ;fl cot? é fix+°t + ;fl tan?

19 L
3 fix+"t ; (21)

where



fi:12+24k+lgp4 i2ki2k?
fl=2+4k+2 1j8kj8k?

~_ 1 p_ e
~= X a2k n):

T Three cn type solutions:

192 21: 2 i2 —~
q_

Ui (X 1) = +é fl i8k2!20n2(kx+"t;!); (23)
1P 21: 2 2 <

i8k*1%2¢cn? (kx + "ty 1); (24)
W_J'Iegﬁ 7f29/224958.58 TD[(1)] TJET0.4w133.28-222.96m139.13-222.961SBT 1334905148(7)8680.14

t ;

fi=9 j 128k* 1j161%2+161% ;
I .

fl=9 j 128k* 1 12+ 14 ;

iy .
=i}i§k2 1§217;
2°3
pat
~=8k3(1j21%)+3k + s I
T=8k3(1§21%)+3k +1
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128k* 1+ 1412+ 14 -

fi=9j
I .
fl=9 j 128k* 1§ 12+ 1% ;
iy .
N LTI
2 3
¥ - 1CI—'”
S=8k3® 1+12 +3k + = fl ;
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It is noted that the wave speeds of the known travelling wave solutions to
the mCH equation in the literature are some speciflc numbers, while the wave
speeds of the solutions from uz(X;t) to u;g(X;t) above are in general forms. In
other words, they can be expressed as ¢ = % where F (k) and G(k) are some
expressions with radicals in k, and k is an arbitrary constant. Consequently,
many known travelling wave solutions to the mCH equation are only special

cases of them.

For example, if k = j1, then ug(x;t) and u;(X;t) become

4 pé

us(X;t)=jl+ =coth’ — (Bx j t); (28)
3 18

ur(x;t)=jl+ ;tanh2 i (X j 2t) + ;coth2 i(x i 20); (29)

which are the solution (1.7) in [13] and the solution (59) in [12] respectively.

If k =0, then uz(X; 1), us(x;t) and u;(X;t) become

ug(x; t) = 2 csch? ; (X j 2t); (30)

us(x; t) = j 2sech? ; (X j 2t); (31)
1 1 1 1

U (X;t) = > tan? 2 (xjt)+ > cot? 2 xXit); (32)

which respectively are the solutions (58), (57) and (62) in [12].

If k =1, up(x;t) and up;(x;t) become

1
Uio(X; t) =1 + 2 cot? > (X ijt); (33)
Ui (X;t) =1 + 2 tan? ; Xit; (34)

which respectively are the solutions (61) and (60) in [12].



More real solutions to the mCH equation can be obtained by taking difierent
values for k. Complex solutions can also be obtained by taking suitable values
for k, in other words, selecting those values for k such that the values inside

the radicals are negative.

4 Solutions to the mDP equation

By the same procedure, we obtain the following travelling wave solutions to

the modifled DP equation. All the solutions have been verifled.

T Two rational type solutions:

15
Uo(X; 1) = -3
15
UZO(X, t) = m 1 1

T One csch type solution and one sech type solution:

3 19- Ll
u21(x;t)=k+@ﬂc3ch2 % fix+ t ;
.3 , 1 a 1
Uy (X; 1) =K j @fl sech 20 fIx+ t
where
p

fl=50+ 100k + 10 ' 25 j 60K j 60KZ:
1 9
=555 f1(160K j fI):

t Three tanh/coth type solutions:

Usz (X; ) =K + 3 4 tanh? 1 qﬁx + ‘tﬂ'

283V T 5290 115 ’
K+ > flooth? 1 x4 '

)=k + —flcoth> — fIx+"t ;

Uas (X;1) 5200 O 115 X ;
. 1 p.

S — 2 L

u25(x,t)—k+11560f|coth 170 fix+ "t
1 p. m

fitanh? — " fix+ "t

+
11560 170

where

(35)

(36)

(37)

(38)

(39)

(40)

(41)



fi= §850 j 1700k+170p25 i 240k

fl = §1150 § 2300k + 230 p25 i 15k
. 4
"~ 304175

240 k2;
15k?;




a_
Us; (X 1) = +; fl+125k2(1i 12)cni2(kx + "t 1); (47)
a_
Uz (X; 1) = +; fl § 125k2!zcn2(kx+‘t;!); (48)
Uss (X;t) = +;pﬁ+125k2(1i 12)cni2(kx +"t; 1)
5125k2!2cn2(kx+"t;!); (49)
where
t .
fi=1j15k* 1§161%+161% ;

T .
fl=1 3 15k* 1§ 12+ 14 ;

1 5 ,% .
=iz ik 1j21%;
22
19T
=10k § 219 +4k  +Z Al
2

~=10k3(1 j 21%) + 4k +;pﬁ

T Three sn type solutions:

1p 15

Uss (X 1) = +§ ﬁ+?kzsni2(kx+‘t;!); (50)
Uss (X; 1) = +;pﬁ+125k2!2sn2(kx+‘t;!); (51)

1
Uss (X;t) = + 3



F (k) and G(k) are some expressions with radicals in k, and k is an arbitrary
constant. Consequently, many known travelling wave solutions to the mDP
equation are only special cases of them.

- 11

For example, if k = j 75, then ux4(X; t) becomes

p-
1 15 , 2
— .t 4 -y
Uog ETRET: coth 16 (Axit; (53)

which is the solution (1.11) in [13].

If k = j 12, then uys(x;t) becomes

15 15 1 15 1
‘)= j — + — tanh? = (2x j 5t) + — coth? = (2x j 51); 4
Ups(X; t) i35 32tan 8(x.5t) 32cot 8(x.5t), (54)
which is the solution (28) in [12].
If k =0, then u,; and u,, become
1 1
Upy = 85 csch? 2 (2x j 5t); (55)
15 1
Upp = igsech2 2 (2x j 5t); (56)

which are the solutions (27) and (26) in [12] respectively.

As in the case of mCH equation, many other real and complex solutions to
the mDP equation can be obtained by taking suitable values for k.

5 Conclusions

In this paper, a new procedure has been proposed for finding the exact trav-
elling wave solutions to the modifled Camassa-Holm and Degasperis-Procesi
equations. Many new solutions have been obtained. Most importantly, these
solutions are in general forms and many known solutions to these two equa-
tions in the literature are only special cases of them. There are two important
technical points in this paper.

First, we use the transformation - = ,;x + ,,t instead of - = x + ,t in step
S1. The main reason is that, although - = x + ,t has fewer parameters than
= ,1X + ,,t, the corresponding wave speed has the form , = % which

is more di—cult to solve than ,; = G(k) and ,, = F (k). For the example in
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Section 2, if the transformation - = x + ,t is used, then only trivial solutions
are obtained in step S5.

Second, in order to get general forms of the travelling wave solutions, we do
not integrate the resulting ODE and set the constant of integration to zero in
step S1. Otherwise, only special solutions can be obtained. For example, let
T be the function csc and pde the mCH equation (3) as in Section 2. If we
integrate the resulting ODE (6) and set the constant of integration to zero,
then, instead of obtaining the general form ug(X; t) in Section 3, we only obtain
the following special solution with wave speed ¢ = 1:

u(x;t) = il+20302;(x it: (57)

The reason is as follows. The constant of integration is an arbitrary constant
which corresponds to the general form of solution. Therefore, when it is set to
zero, only a special solution is obtained.
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