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Abstract—We show that Lagrange inversion can be used to
obtain closed-form expressions for a number of series expansions
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To obtain the theorem statement, the k and m, which are
dummy variables, must be swapped.
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It is now straightforward to equate coefficients of wk in (18)
and obtain the theorem statement (14). The other statements
are proved in the same manner. 2

We introduce the next theorem with a general discussion.
Given an analytic function y = f(x) and its inverse x =

_
f(y),

it is well known that f(
_
f(y)) = y and _

f(f(x)) = x.
For Lagrange inversion, both functions are known through
series expansions, and we consider a consequence of this.
Substituting into (5), we see
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X
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Denoting the expansion of f(x)k by

f(x)k =
X
‘�k

f
(k)
‘ x‘ ;

where, since f(0) = 0 by assumption, we start the sum at
‘ = k, we obtain the identity
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To invert the order of summation, we again use a diagram.
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The left diagram shows the sum in (19) with the sums over
‘



At this stage, we still have an infinite series. After the final



We finally re-express the binomial factor in more conventional
form:
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