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In this extended abstract, we outline investigations of the application of Newton
and Halley iteration to the computation of nth roots of an integer. We give an
analysis that reduces the number of iterations by guaranteeing the number of
correct digits obtained at each iteration. The initial application is to the calculation
of the integer-power content of an integer.

1 Introduction

The integer-power content of a € Z is defined! to be the largest n € Z such
that a = b™ for some b € Z. We write ipc(a) = n. Also, b = ipf(a) is the
integer-power free base for a. Clearly we have a = ipf(a)®%(®). Any algorithm
that finds the integer-power content and base is called a perfect-power clas-
sification algorithm by Bernstein?. The first step in such an algorithm will
be what Bernstein calls a perfect-power decomposition algorithm, that is the
finding of any integer m, not necessarily maximal, such that a = b". Algo-
rithms for computing n have been given by Bach & Sorenson®, by Bernstein?,
and others. The computer alge #rnst prtBR #m by Bern aple g s afua drit



is based on a progressive-precision Newton iteration. The use of progressively
increasing precision at each step of an iteration is something that is obvious
and instinctive to human computers working by hand, and was enunciated in
a computer setting by Brent*.

As well as examining the efficiency of existing algorithms, including p-adic
methods, this paper considers in detail the control loops used in programming
progressive-precision iteration. We also consider Halley iteration as an alter-
native to Newton iteration. Our considerations are also influenced by the
specifics of the Maple computing environment, in particular the fact that
Maple offers a radix 10 number system.

2 Newton and Halley Iteration

In this section, we give a uniform treatment of the Newton and Halley itera-
tions.

2.1 General iteration formulae

Consider solving the equation f(z) = 0, given an initial estimate zo for the
solution. We expand f(z) as a Taylor series around xg.

f() = f(wo)+(z—z0) f'(z0) + 5 (z—20)* " (x0) + § (z—20)* f" (o) +... (1)
Setting h = x —x¢ and f(x) = 0, we can solve for h by the Lagrange inversion
theorem. Abbreviating f(zo) to f for clarity, we write

1 n 3 \2 _ frrem
-—f- Sf7+ ) 5ff P+ (2)
fro2r) 6(f')
The series is written as shown to emphasize that it is a series in powers of
f(zg). The classical Newton iteration is obtained by taking one term of this
series, and the classical Halley iteration is obtained by converting the series

to a continued fraction and taking terms to O(f?). The continued fraction
form of (2) is
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and dropping higher-order terms and reverting to standard iteration notation,
we get Halley’s method as
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