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cylinders and the simple closed-form solutions which are found allow a discussion of
some of the details of the formal asymptotic procedure which are passed over in the
main paper because of algebraic complexity.




" 340 D. J. JEFFREY

m’?d“k“ﬁhi)ﬂ m‘f"“ii‘ mj!m - ';_“ﬁ‘-,:,_ffg Nrvmn ccdanmn anen svca srimitan (ool




Tr! IRND ATTINTG FIFT M aalm DN T sy e 243

T

——— ——————————
_
. .

and Q, =0. An attempt to calculate Q\" from (3.3b) by this method leads to an
integrand e~ % coths which would give an infinite value for Q{"’. Obviously the
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To calculate the quantities defined in Section 2, we shall need d¢/dn on the sphere
surface within the gap; this is most easily expressed in terms of Z:

@ _ %y 0 g0

= YZ+L1+1/2)+00).

, The Seeond-arder Splation Onteide the Gan

Before deriving the second-order solutions outside the gap, we note that the first-
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result

s

n? f f(s)Molsn)ds =J [(ffsy =f"1J o(sn)ds, (5.1)
o} 0

which is true provided ' — f/s — 0 as s — 0. The prime denotes d/ds. For problem (c)

the boundary condition becomes

o

(L) =—(1+¢?)} J Cl(s)sinh sJ 4(sn)ds,
4]
where

C(s)sinhs = e 5—3se *+2s’e S+s’e Scoths—
(se~*coths) +(s?e *coths)”.

The required solution for ¢!{*' is then obviously
¢7E,n) = — (& +n?) j Cls)sinh s¢Jo(sm)ds.
0

For problem (b) things are not so straightforward. Before we can use (5.1) we must
separate the s~ ' singularity in coth s; we obtain

H2(1,n) = —5(1+n2)+(1+n2)%f /B(s)sinhsJO(sr])ds, (5.2)
4}
where

B(s)sinhs =se *+1se *coths— .
e *coths—e™%/s) +4{se *coths—e~5)".

We must now find a particular integral of Laplace’s equation that will fit this
boundary condition. We find it by substituting

o«
e ;.M’—_hé—LVP Sy G, L s -_

) LI,

i -
I
into Laplace’s equation, taking an inverse Hankel transform and obtaining an
equation for W:
62W/652—52W+4j EET+nY) "t o(sn)dn = 0.
0
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purpose; the most convenient is

¢ s 14s __sinhs¢
W= (l+&)e S— e F = )
s? (L+¢5) s? sinh s

(5.3b)

When this partly arbitrary choice is combined with a general solution of Laplace’s
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which, as stated, contains no singular terms. Thus, combining this with the fact that
only the z component of S is non-zero, we can reduce our expression for S to

S =2na® f’ {[?::l —(1 —Z)lﬁ(“} (14%;%7 +0(?).
0 ¢ Je=1

Performing the integrations gives (using { for the Riemann zeta function)
Spe = @’ T, [4n* + (37 — 1)1 — $na’G[6{(3)+&(40(3) - 30(4))],  (7.1)

where T,, is given by (6.1), and S'% = 3na%{(3)G,. Smith & Rungis {1975) and Love
(1975) obtained the leading-order G, term for S, but not the T, term.

The expressions with which we shall compare these results come from Jeffrey (1973)
and are exact for all separations; in the present notation,

Ao1,t? and S, =3m1a’G, Y. Ay, 17
0 p=0

[\/]q

.
Sy =3ma°G,

ps

p

where t = $(1+¢)” ! and the coefficients are given by

pon 302 [y
A.o=236,, and A, =(—1)" Amsio—n—s—1-
mn0 1n P ( ) 5;1 <”+m> s(p s—1)

— We wish to test the rate at which the infinite Series cQnyngs. hoth to test_their

usefulness computationally and to test the method of reflexions. The rate of
convergence of the method of reflexions is of interest because it is a method often
applied to situations more complicated than those studied here, when only a small
number of terms (say 10) in the infinite series can be obtained. We shall sum the series
expressions for S, and S, up to some p = P and compare the numerical results with
those obtained from asymptotic expressions.

Starting with what turns out to be a rapidly converging series, we calculate
S /4na*G, when the spheres touch (¢ = §) for P = 12, 15, 20 and obtain 2:718, 2706,
2:705. The last value equals {(3) to the accuracy shown and we conclude that for this
weak interaction between the spheres a small number of terms in the series is
satisfactory. Such is not the case for S,,. In Fig. 2 the solid lines give S,/3ma*G, for
P = 70, 150 while dotted lines show two approximations to (7.1), namely

1.4 1.4

1o L
6{(3)+2— and 6((3)+ ——————.
¢3) Ing a ¢ (lng—~In2—2y)
The full expression (7.1) is indistinguishable from the second approximation because
the (Hc) terme lareelvcancel leavinea very small coefficient It_is_[ilfjg thateyepg with
- —————————————

a very large number of terms, methods such as those using reflexions give very poor
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8. Calculation of F
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cylinders, the various approximate solutions to problems (b)-(d) can be found in
simple closed form. There is no counterpart of problem (a), for if two circles are at
equal temperatures there is a logarithmic singularity in the potential at infinity unless
the temperature is constant everywhere.

ﬂ!ﬂarﬁnl“tjnn Nintcida tha MCamn

to two dimensions. however. brings with it some minor modifications to the

coordinates. If we denote the Cartesian coordinates in the plane by (x, y) and place the
sphere centres on the x axis (see Fig. 1), then the equivalent of (3.1) can be written

4 : ALy
#—ds
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(1963). Although we have made no use of the boundary condition far from the circles,
this matches with the solution there (i.e. this outer approximation matches the inner
approximation (A.1)). That is, rewriting the one-term solution (A.1) in the gap
variables X, Y, expanding for small ¢ and keeping two terms gives 2X/Y>—2¢X3/Y*,
conversely, rewriting the two-term solution (A.6) in the variables used outside the gap
x, y, expanding for small ¢ and keeping one term gives 2x/y* —2x?/y*; and these are

the same.
This might suggest that in this singular perturbation problem matching has played

no role at this stage; but that is not true. The solution (A.1) is in fact not unique, for
L — L ﬂr‘“—-:-f "ﬂ'f[\ﬂ%%%ﬁﬂf—

sin Nnécosh Nany, N =1,2,3... (A7)
L - -y 4 ! . : . j o, I R S SN SO BN SIS PRUNPIPETY RPN Y TS o
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periodic array of cylinders). Thus the singularities in the last term of (A.10) must also
cancel. To verify this, we continue the solution outside the gap in the form

¢(I)+{i¢)(2)+ o

[ & S 1 G5 BRS A [ S

P = L Re (20 +) = 4 +4(&7 — 3¢n). (A1)
This shows a typical symptom of non-uniformity, being singular like the inverse cube
- -~ LAY SRR ) ~ a1 st _L - e I 0 YR SRR SR [ PUNYS: * [Ny e
-
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The two-term inner approximation is found to match with the two-term outer
approximation, again because we have excluded the more singular terms (A.7).
Using (A.11), we find the flux Q,; through —#, < < 1, becomes






