Crafting a Repository of Knowledge Based on Transformation
Rules

A.D. Rich (1) and D.J. Je rey (2)

1 62-3614 Loli’i Way, Kamuela, Hawaii, USA.



— Restrict to domains of validity. Many rules are valid only if their variables are restricted to a certain
domain. Conditions on a properly de ned rgje must restrict its application to the domain over which
it is valid. For example, the transformation = z2 ¥ z should only be applied if z is known to be purely
imaginary or in the right half of the complex plane (unrestricted versions of this transformation caused
the well remembered ‘square-root bug’ in Maple).

— Restrict to simpli cation. To avoid in nite loops, applications of rules must eventually result in an
expression that can be made no simpler (i.e. an expression to which no rules applies). The conditions
attached to a rule must limit its application to those expressions for which its application results in a
simpler expression. For example, if F stands for any trigonometric function and n for a rational num-
ber, the goal of transformations of F(n ) is to reduce the magnitude of the angle. Thus, speci cally,
although sin(n ) ¥ cos((n



4 Integration examples

One conspicuous bene t of rule-based integration is the greater simplicity of its results. Simplicity can
include not just one integral, but consistent behavior over families of integrals. For example, the following
integrals show symmetry between trigonometric and hyperbolic functions:

z dx Ioa+x
— = 2arctanh p— ; (D)

a+x b+x b+ x

YA o J
dx = 2arctan p—b aly @

a+x b x a+tx’

In contrast, Mathematica and Maple express one integral using arctangent and one using logarithm:

: dx o SN o M
p—pP——=1In a+b+2x+2 a+x b+x : 3)
a+x b+x

5 Platform Requirements

An e cient and reliable software platform is required to build a rule-based repository of knowledge. As
a minimum the support platform needs to provide the following services:

— Transformation rules. The platform must make it possible to de ne and recursively apply transfor-
mation rules to expressions of a speci ed form. This requires a exible and natural syntax for the
patterns used to specify the form of expressions.

— E cient pattern matching. A rule-based system may have thousand of rules, and hundreds of rule
applications may be required to simplify an expression. Thus when given an expression to simplify,
it is essential that the pattern matcher quickly nd the applicable rule, if any. Thoughts on how to
implement an e cient pattern matcher is discussed below.

— Exact and arbitrary precision arithmetic. Numerical routines are required for built-in functions and
operators since a rule-based approach is usually not appropriate for numerical computations.

— Programming environment. The platform must provide the ability to input, evaluate and display
expressions, as well as provide a suitable environment for testing and debugging the repository.
Since most modern computer algebra systems provide the above capabilities, they are suitable plat-
forms for crafting a rule-based repository of knowledge.

6 E cient Pattern Matching

A general purpose repository might require thousands or even tens of thousands of rules. Obviously
sequentially searching a list of that many rules to nd a match would be unacceptably slow. Even having
a separate list of rules for each built-in function or operator is insu cient, since some functions may have
a large number of rules associated with it (e.g. our integrator requires over a 1000 rules).

Therefore instead of a list, the software platform supporting a repository should store the rules in
the form of a discrimination net based on the tree structure of expressions. Then, for example, all rules
applicable to expressions of the form sin(u) will be collected in one branch of the tree, all di erentiation
rules in another, all integration rules in another, etc. Then the rules in each branch will be recursively
subdivided based on the form of its arguments, etc.

With the rules stored in such a discrimination net, the rule applicable to a given expression can be
quickly found by a simple tree walk in log(n) time, where n is the number of rules in the repository.

7 Advantages

The following summarizes the advantages of storing mathematical knowledge in the form of a repository
based on properly de ned transformation rules:



— Human and machine readable. Since rules are de ned using mathematical formulas rather than pro-
cedural programming constructs, they express a self-contained mathematical fact that can be attrac-
tively displayed in standard two-dimensional mathematical notation.

— Able to show simpli cation steps. The successive application of rules exactly corresponds to the steps
required to simplify an expression. Thus when a rule is applied, it can display itself in standard
mathematical notation as justi cation for the step, and then suspend further simpli cation so the
partially simpli ed result is returned.

— Mechanical rule veri cation. Since the right side of a properly de ned rule is just a mathemati-
cal expression, the rules validity can often be mechanically veri ed. For example, the right side of
integration rules can be di erentiated to see if they equal the integrand on the left.

— Facilitates program development. The fact that properly de ned rules are inherently self-contained
and free of side-e ects makes it easy to test the e ect on the system of selectively adding, modifying
or deleting rules. Although collections of rules may be highly recursive, each individual rule must
be able to stand on its own, thus making it possible to test it on examples before adding it to the
collection.

— Platform independent. Since properly de ned transformation rules consists only of mathematical
expressions and pattern matching speci cations, the translation of rules from the syntax of one
computer algebra system to another is relatively straight-forward.

— White box transparency. For the most part, computer algebra systems appear as mysterious black
boxes to users with little or no explanation given as to how results are obtained. However, if the
source le of rules on which a CAS is based were included with the system, it becomes a transparent
white box, making it possible for users to modify existing rules and even add new ones.

— Fosters community development. The open source nature of a rule-based repository of knowledge
would foster an active community of users. A website blog dedicated to a repository could provide
developers the ability to propose new rules and improvements to existing ones. Developers would
vie with one another to get credit for adding new rules to the repository. Others would shoot down
defective ones. Thus the system would grow and evolve in Darwinian fashion much the same way
Wikipedia does.

— An active repository. Encyclopedias and reference manuals, even on-line ones, are inherently passive
repositories in the sense that users have to nd the knowledge required to solve a given problem, and
then manually apply it. However, given a problem a rule-based repository actively nds and applies
the knowledge required to solve it. Thus the knowledge in such repositories is in a much more useful
form.

References

1. Abramowitz,M. & Stegun,l., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. US Government Printing O ce, 1964. 10th Printing December 1972.

2. Einwohner, T.H. & Fateman, Richard J., Searching techniques for integral tables, Proceedings ISSAC ’95, pp
133-139, ACM Press, 1995.



