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Abstract—We consider the computation of Stirling numbers
and generalizations for positive and negative arguments. We
describe computational schemes for Stirling Partition and Stir-
ling Cycle numbers, and for their generalizations to associated
Stirling numbers. The schemes use recurrence relations and are
more efficient than the current method used in MAPLE for cycle
numbers, which is based on an algebraic expansion. We also
point out that the proposed generalization of Stirling numbers
due to Flajolet and Prodinger changes the evaluation of Stirling
partition numbers for negative arguments. They are no longer
zero, but become rational numbers.

I. INTRODUCTION

Among the remarkable sequences of numbers with impor-
tant combinatorial significance one can count the sequences
of Stirling numbers. These numbers were first introduced by
James Stirling in [13] to express the connection between the
ordinary powers and the factorial powers. In older literature,
they are called Stirling numbers of the first kind and second
kind. A modern notation for these numbers follows Knuth’s
suggestions [10]. He proposed the notations�

n

m

�
�r

and
�
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m

�
�r

for respectively Stirling Partition numbers (Stirling numbers of
the second kind) and Stirling Cycle numbers (Stirling numbers
of the first kind). These notations in the special case r = 1
were first suggested by Karamata in [8].

The definitions used in this paper give all numbers as non-
negative, again following Knuth, in contrast to earlier defini-
tions [1], [2]. The names reflect the combinatorial significance
of the numbers, and the notations are inspired by the similar
notation for the binomial coefficients.

We describe a new implementation of Stirling cycle num-
bers in MAPLE, which is faster than the existing implementa-
tion in the combinat package. The existing implementation
does not use recurrence relations, but expands a polynomial.
The current MAPLE functions have names stirling2, for
Stirling partition numbers and stirlingl, for signed Stir-
ling cycle numbers.

Following a challenge by Knuth, several authors suggested
generalizations of Stirling numbers to non-integral arguments
[12], [5]. The widely accepted generalization [5] allows Stir-
ling numbers to be extended to complex arguments. The

proposal leaves the value of
�

0
0

	
undecided, and we discuss

possible values here.

II. DEFINITIONS AND PROPERTIES FOR r = 1

We begin with the case r = 1, which has been the traditional
meaning given to Stirling numbers.

Definition II.1. The Stirling partition number
�

n
k

	
is the

number of ways to partition a set of n objects into k nonempty
subsets.

Definition II.2. The Stirling cycle number
�

n
k

�
is the number

of permutations of n objects having k cycles.

Stirling numbers satisfy the recurrence relations�
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similar to the one satisfied by the binomial coefficients�
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The identities (1) and (2) hold for all integers n and k (positive
or negative). The boundary conditions�
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= 1 for k > 0 ;�
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where �0n is the Kronecker delta, lead to unique solutions for
all k; n integers. The Stirling cycle numbers and the Stirling
partition numbers are connected by the remarkable law of
duality �
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�
;

which is valid for all k; n integers. Other special values are�
n

1

�
= 1 ; and
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= (n� 1)! : (3)

For n; k > 1, it is possible to write Stirling partition numbers
as a sum over binomial coefficients:�
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This can be extended to cycle numbers by using the identity
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The original definitions used by Stirling are important. Using
the ‘falling’ and ‘rising’ notation of Knuth, we can write:

zn :=z(z � 1)(z � 2) : : : (z � n+ 1)

=
X
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(�1)n�kzk : (6)

zn :=z(z + 1)(z + 2) : : : (z + n� 1)

=
X

k

�
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k

�
zk : (7)

III. ASSOCIATED STIRLING NUMBERS

For extended discussions of associated Stirling numbers, we
refer to [2], [7].

Definition III.1. The number
�

n
m

	
�r

gives the number of
partitions of a set of size n into m subsets, each subset having
a cardinality � r.

Definition III.2. The number
�

n
m

�
�r

gives the number of
permutations of n objects into m cycles, each cycle having
a cardinality � r.



stirling1:= (n,k)->
coeff(mul(z-m,m=0..n-1),z,k);

If fact the implementation in Maple works a little differently
from this. For any given n, the function computes all n � 1
coefficients of the polynomial, or equivalently all

�
n
k

�
for fixed

n and 0 � k � n, and stores them in cache memory. Thus
after one Stirling number is requested, subsequent requests
for another number with the same n, but differing k can be
returned immediately.

We compare computation of Stirling cycle numbers com-
puted by four methods.

1) equation (5).
2) Maple using (6).
3) equation (15).
4) equation (2).

A. Stirling cycle numbers by recurrence for 0 � k � n
To calculate

�
n
k

�
, the program computes only those ele-

ments which are needed for its evaluation, according to the
recurrence relation. Thus, in coordinates (N;K), these are the
pairs inside the parallelogram delimited by the lines N = K,
N = K + k, K = 0, and K = k. Notice that, when k is
close to 0 or n, the number of pairs computed becomes of
order n, because the area of the parallelogram is of order n.
(By ‘of order n’ we mean that the number of pairs will be
approximately linear in n, with only weak dependence on k.)

When k approaches n=2, more pairs are computed, and so
the algorithm is slower. The worst case is when k is closest
to n=2. Then our algorithm computes a number of pairs of
order n2, because the area of the parallelogram is of order
n2. (The number of pairs will be approximately quadratic in
n with a weak dependence on (k � n=2).) Our algorithm is
always better than the algorithm existing in MAPLE, even in
the case k = bn=2c. MAPLE’s algorithm is always of order n2

because the number of arithmetic operations that are required
to compute the coefficients of the polynomial (6)) (of order n2

arithmetic operations are done in order to compute, so when
k is farther from n=2, the difference between our algorithm
and MAPLE’s increases. The computation works bottom-up,
starting with the known boundary values for

�
n
n

�
and
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n
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�
and

considers two cases depending on whether n > 2k or not. In
either case, three subcases are considered. For example, when
n > 2k, the algorithm computes as follows:
� the pairs [i; j], 1 � i � k, 1 � j � i,
� the pairs [i; j], k + 1 < i < n� k + 1, 1 � j � k, and
� the pairs [i; j], n� k + 2 � i � n, i+ k � n � j � k.

On the other hand, if n � 2k, we compute as follows:
� the pairs [i; j], 1 � i � n� k, 1 � j � i,
� the pairs [i; j], n � k + 1 < i < k, i � n + k � j �
i+ n� k � 1, and

� the pairs [i; j], k + 1 � i � n, i+ k � n � j � k.
The two cases are illustrated in figures 1 and 2. For the
transition case n = 2k, a third case could be added, but the
efficiency gains would be negligible. Our algorithm uses only
a vector of length k to store all pairs computed. We can do

that because
�

n
k

�
depends only on the pairs in the level below,

that is, with the first component equal to n� 1.

.)



TABLE I
TIMINGS IN SECONDS OF COMPUTATIONS OF S





If these are to hold true when n ceases to be integral, then
substituting n = 0 in these equations gives a contradiction.
One of them must take precedence for the determination of�

0
0

	
.

The integral definition (17) shows the same behaviour. It
has been shown that [14]

lim
x!0

�
x=n

x

�
= n :

Thus the origin is a singular point and the value there is a
matter of convention.

B. Consequences of different assumptions
We consider here the consequences of retaining the recur-

rence relation (18), and allowing different conventions for
�

0
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.

Under the definition
�
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= 1, we have seen
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= 0. This in

turn implies
�

0
k

	
= 0 for all k > 0, and by further extension�
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k

	
= 0 for all k > 0; n < 0.

In contrast, under the definition
�
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= 0, we have from the

recurrence relation�
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From this we have 2
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= �1. Thus by

induction, it is easy to establish�
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k!
; for k > 0 :

To proceed further, we notice that the recurrence relation for
partition numbers can be written
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:

If n is regarded as fixed and
�

n+1
k

	
is regarded as known,

then the recurrence relation can be solved. We therefore state
the lemma

Lemma. The recurrence relation mSm +Sm�1 = gm has the
solution

Sm =
(�1)m

m!

24S0 +

mX
j=1

(�1)j(j � 1)! gj

35 :

Proof. Direct substitution in the recurrence relation.

We now apply this to
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where Hm is a harmonic number. It seems natural to continue
with

��1
0

	
= 0, giving�
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VIII. CONCLUSIONS

We have considered two computational problems in this
paper. The first problem is a more efficient algorithm for
evaluating the known Stirling Cycle numbers with positive
arguments. For negative arguments there are no commonly
accepted definitions for either cycl-7.307 Td [(x=n)]TJ 5.4e


