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Abstract

An algorithm is given for the integration of a class of
piecewise-continuous functions. The integration is with re-
spect to a real variable, because the functions considered
do not in general allow integration in the complex plane to
be defined. The class of integrands includes commonly oc-
curring waveforms, such as square waves, triangular waves,
and the floor function; it also includes the signum function.
The algorithm can be implemented recursively, and it has
the property of ensuring that integrals are continuous on
domains of maximum extent.

1 Introduction

The integration of a function expressed using the Maple
function piecewise or the signum function was considered
in [3], where the fundamental definitions and theorems on
integrating discontinuous functions were presented. We re-
call that a function F(z) is said to have breakpoints at those
values of # where the function is discontinuous. It was also
pointed out in [3] that the problem of integrating piecewise-
continuous functions can be posed only within the context
of integration with respect to a real variable, and thus we
continue to work in that context. The integration problem
has two aspects: deriving a primitive, or anti-derivative for
a given function, and ensuring that the result returned by
the integrator is valid on a domain of maximum extent [2].

We also follow [3] in noting that a discussion of the inte-
gration of piecewise-continuous functions can be distracted
by contentious, but irrelevant, issues, such as which defini-
tions of the signum and Heaviside functions are the correct
ones. These issues cannot be ignored completely, because
the value of sgn(0) has a bearing on the results given here.
However, we shall avoid the distraction by defining a cog-
nate of the signum function that fulfills the requirements of
integration, and use it without prejudice to the wider dis-
cussion.

The new features of the present algorithm are, first, an
extension to a broader class of integrands. Specifically, it can
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3 Preliminary transformations

This section establishes that an integrand containing any of
the above functions can be reduced to one containing only
floor and signum. These transformations are not in general
equalities, because of pointwise differences, but they leave
any integral unchanged.

zmody = z—yl|z/y|.
H@p) = 3(1+S@).

SQW(z) = cos(rn|z]).

STW(z) = 2r—-1-2z].

In addition, if a signum function has a nonlinear argument
that can be factored, then we have the transformation

S((az —b)g(x)) = S(az —b)S(g(x)) .
Finally, the argument of S can be simplified by using
S(ax — b) = S(a)S(x —b/a) ,

where it is assumed that a # 0.
Therefore, any integration problem [ f(z,{P:})dz can
be replaced by the problem

/F(m,{S(m —b)|i =1..p}, {lc;z —d;||7 =1..q})dz , (6)
where for nontriviality it is assumed that c; # 0.

4 Integration procedure

The integration problem (6) is solved in a way that can be
programmed recursively. Integration starts by replacing all
of the signum and floor functions by temporary symbolic
constants; here symbols s; are used for S functions and f;
for floor:

F= F(e, {sili = 1.p},{f;]5 = 1..q}) dz .

The standard procedures of the particular system can now
be used to integrate F'(z,{s:;},{f;}) with respect to z to
obtain the primitive G(z,{s:}, {f;})-

Theorem: Let G(z, {s:},{f;}) be a primitive of the function
F(z,{si},{f;}), and let G be continuous in all its argu-
ments. Then G(z,{S(z — b))}, {|cjz —d;|}) is a primitive
of F(z,{S(z —bi)}, {lc;z — d;]}).

Proof: The set of breakpoints of F' is

D= {bili = 1.p} U{(n +d;)/c;|j = 1..q,n € Z}.

For any = ¢ I, there exists a neighbourhood of x within
which the signum and floor functions are constant. Hence
G’ = F within that neighbourhood by construction. Thus
G' = Ffor all x ¢ D a

Although the function G(z,{s;},{f;}) is assumed to be
continuous, after the temporary constants are returned to
their signum and floor functions, there will be discontinu-
ities at the breakpoints in general. To obtain an integral
valid on the domain of maximum extent [2], these disconti-
nuities must be removed. The function G can be regarded
as a candidate for the integral of F', but one that must be

rectified, i.e. made continuous. The algorithm continues
by choosing one of the temporary constants and substitut-
ing the original function for it, and then eliminating any
discontinuities thereby introduced before continuing to the
next constant.

Starting with the first signum, we proceed as follows.

Gz, {s:},{f;}) = G(z,S(z = br), {sili = 2..p}, {/;}).
Now compute
J = G(b17 1, {Si“ = 2'~p}7 {fj})
=G(br, -1, {sili =2..p},{fi}) ,
and define
Gi(z, {sil1 = 2.p}, {f;}) =
G(xv S(m - bl)v {s:]i = 2..p}, {fj}) -

Theorem: The function G, is a primitive of F' and is con-

tinuous at x = b;.

Proof: If © # by, then S(z — b1) is a constant and therefore
i = G'. By direct computation

LJS(z —br) .

Ill)lgll_l_ Gy :mEIbrll—Gl = %G(blvlv{si“: Zp}v{fj})
=+ %G(bh_L{si“:2"p}7{fj}) ’
where the continuity of G has been used. O

The function G is now discarded and G used instead.
Thus G is the new candidate for the integral. As each s; is
returned to S(m — bi)7 a new function G; is created and used
in subsequent steps. After p steps, all the constants {s;}
have been returned to their signum functions and a function
Gp has been computed that is continuous at all breakpoints,
and is the candidate for an integral.

A more elaborate procedure is needed in order to return
the floor functions to the candidate function. Again the first
constant is replaced:

Gp(z,{f;}) = Gplz, iz —di ], {f;|5 =2..4}) .

The floor function is discontinuous when its argument equals
an integer, when ci1x —d; = n. Therefore calculate the jump

n—l—d1

’
C1

o= G (Mgl = 2a))

n+d .
Gy (ME -1 gl = 2 )
and define a new candidate function by

Goi(z, {fils=2.q}) = Gplz, |z —di],{f;l7=2.4})

lerz—di]

- > Jm. (7)

If [ciz — d1] < 0, the summation in this formula is evaluated
using the convention of Graham, Knuth and Patashnik [1],
given in the answer to their exercise 2.1, to wit, if & < 7,
then

S Pmy=— Y P(m). (8)

m=j m=k+1



Notice that for & = 7 — 1, corresponding in the definition
Of Gp+1 to I_Cl$ — dl



Using the methods given here, its integral is given by
\ 1 . .
/HVV(:C) dr = —(2|z| —cosmz(l +cosm|z])) . (12)
s

Similarly the full-wave rectified sinewave is studied. It is

defined to be FW (z) = SQW (z) sin mz. However it can be
equivalently expressed as v/1 — cos 2#1:/\/5, in which form

it was studied in [4], where an integral was obtained that is
equivalent to that obtained by the present method.

/FW(&:) do — ZL:J B cos Tz cos |z | . (13)

™

In [4], continuous integrals were obtained for trigonomet-
ric functions by including floor functions in the final results.
Could there be a difficulty if an integrand studied in [4



This paper has focussed on the integration of piecewise-
continuous functions. We do not wish to imply by this that
the algebra of these functions could not benefit from fur-
ther work. Rather the opp



