


of m. Other CAS show similar behaviour. Specifically,
the following indefinite integral evaluates as shown, us-

ing the CAS indicated.

3
—d
/ 5—4cosz =
2 arctan(3 tan z/2) ;
2arctan(3sinz/(cosz + 1)) ;

—arctan(—3sinz/(5cosz — 4)) ;

(3)
Maple, Mathematica

Macsyma

Axiom.

None of these expressions is continuous everywhere.

The two examples show that CAS might return dif-
ferent expressions for an integral that differ from each
other with respect to their continuity properties, and
in addition those properties might be different from the
ones expected by the user. To explore this further, and
to define some notation, we recall the fundamental the-
orem of calculus (Rudin 1976). If f is continuous on an
interval [a, b], the function defined by

o) = [ sy
is continuous and differentiable on (a, b), and

f(z) . (5)

The interval [a,b] is an essential part of this theo-
rem, and yet indefinite integration is mostly performed
by CAS without reference to any interval. Moreover,
present users do not expect to have to specify an in-
terval when posing an indefinite integration problem to
a CAS. When the system returns an expression as an
answer to an integration problem, it may or may not
apply to the interval envisioned by the user. Thus the
Maple response to the first example is correct on the
interval (0, 7) and only incorrect if one accepts that the
interval should be (7/3,37/2).

Standard terminology often blurs the connection be-
tween the function defined by the fundamental theorem
of calculus and any apparently similar function defined
by an indefinite integral. In addition, because the in-
tegral g has a derivative equal to the integrand f, the
term anti-derivative of f is frequently used for g, and
this leads to the common assumption that the problem
of integrating f is solved by finding any function whose
derivative is equal to f. The shortcomings of this as-
sumption are the focus of this paper. To discuss them,
we introduce the following definitions.

(4)

g'(x) =

Definition. An anti-derivative of a function f(z) is any
function F(z) that satisfies F'(z) = f(z).

Comment. This definition requires further qualification
on the meaning of differentiation, and is not indepen-
dent of the CAS under consideration. We take the dif-
ferentiation to be the differentiation used by the CAS.

35

Fateman (1992) pointed out that an anti-derivative of
f =0is F = arctan z +arctan(1/z) in most systems. In
contrast, systems differ significantly over the derivative
of the signum function. DIF( SIGN(x),x) isevaluated
as 0 by Derive, but Maple and Mathematica return a
formal derivative of signum.

Definition. An indefinite integral of a function f(z)
on an interval [a,b] is any function G(z) that satisfies
G(z) = f; f(t)dt+ K, where K is constant on the inter-
val. Since most CAS are willing to consider functions f
that are integrable but not continuous on [a, b], we shall
suppose that the integral is interpreted as a Lebegue
integral (Rudin 1976) or at least as the generalized Rie-
mann integral defined by Botsko (1991). So f need only
be Riemann integrable rather than continuous, and G
is differentiable almost everywhere on (a, b) rather than
everywhere.

In terms of these definitions, the central question
that this paper raises is whether it is sufficient for an
integration routine to return an anti-derivative of the
function passed to it, or whether it should strive to re-
turn an indefinite integral, and if so, on what interval.
With regard to the question of what interval, we intro-
duce the following definitions.

Definition. Given a function f(z) that is integrable on
an interval [a, )], and an anti-derivative F' of f that has
a discontinuity somewhere on [a, b], we shall call the dis-
continuity in F' spurious, because the fundamental the-
orem of calculus asserts that another function g exists
that does not contain this discontinuity.

Definition. Given a function f that is integrable on one
or more intervals of the real line, a function g will be
called an integral on the domain of maximum extent if
it can serve as an indefinite integral of f on all of the
intervals on which f is integrable.

As an example, the expression arctan(tanz) is an
integral of f = 1 on the interval (—m/2,7/2), but the
expression z is the integral on the domain of maximum
extent, namely the real line. Both 2z and arctan(tan z)
are antiderivatives of 1, but arctan(tan ) contains spu-
rious discontinuities at odd half multiples of .

This paper contends that routines should return in-
definite integrals valid on domains of maximum extent,
and that 1t is important to develop and implement such
routines. The first argument in favour of this is the
expectation held by most users. A user who wishes to
derive the result
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discontinuities in the imaginary parts do not. In the
neighbourhood of # = m, the anti-derivative behaves

like

Insinz + In(csc ¢ — cot ) ~ In(m — z) + In
Tz
To leading order, the right-hand side i1s asymptotically
equal to In2 + 2misgn(z — ).
In general, given two functions f; and f5 that behave
near a point z; asymptotically according to

fi~(z—2)" and  fa~(xz—2)7",
then : :
I
fi  fo
will be integrable, but the expression
In f1 +1n fo

will be discontinuous.
To remove this behaviour, we note that although the
transformation

In fi(2) + In fa(x) = In[f1(2) f2(2)]

is usually valid only if f; and f, are real and at least
one of them is positive, for anti-derivatives it is always
permissible. This is because

(Infi+1nfo) = fi/fr + fo/ f2 = (In[f1f2])",

and hence both expressions are anti-derivatives of the
same function. We are therefore free to choose either
form to express an anti-derivative, or integral. We can
see that the collected form In(f1 f2) is always preferable
by the following argument. If z; is a singular point of
the expression In(f1f2), then it will also be a singular
point of In f1 +1n f3, but the converse is not true. There
can be singular points of In f; + In f5 that are not sin-
gular points of In(f1 f2). The proof is an obvious gener-
alization of the example above, and will not be written
out.

Applied to the example above, the transformation
gives

Insinz + In(csc z — cot ) = In(1 —cos z)

which is equivalent to the expression returned by Math-
ematica, and equal to the one returned by Axiom.

A more general transformation is needed to handle
some cases, such as Axiom’s evaluation of the following
integral.

/(ﬂ'—QCL‘ )
—— —cscz | dzx =
z(m—x)

%ln(cos r+1)— %IH(COSCL‘ — 1)+ In(z? — 7z) ,

which has a spurious discontinuity at 0. The transfor-
mation needed is for

alnfi+pnfs,

where a and # are rational coefficients. The obvious
transformation to ln(ff‘f:;@) i1s unsatisfactory because
fractional powers will again introduce discontinuities.
Instead we find integers m,n,p,q such that &« = mp/n
and # = mq/n and p and q are mutually prime. Then
the transformation is

alnfi + Blnfo = %ln(fff:?) .
Applied to the above, it gives
%ln(cos z+1)— %ln(cosa: -1+ hq(;r2 —7z)

1 cosz+1, , 9

Once an integral has been reduced to a single logarith-
mic term, a ‘tidy-up’ transformation In K f¥ = ~In f,
for K,y constants, can be used, justified as above by
differentiating both forms. This turns the last result
into

1 [cos r+1

2

P 1(1‘2 - 71'1‘)2] = In[(z* — mz)cot La] .

For the two examples above, Mathematica obtains
integrals on domains of maximum extent without using
this approach, and it might seem that Mathematica’s
methods are better than these. However, Mathematica
fails to obtain a continuous integral for

sec? x
l+tanz ++/T+tanz
It gives 2arctanh+/1 + tan z + Intan z which has spu-

rious discontinuities at integer multiples of m, whereas

2In(1 + +/1 + tan z) does not.

3 Discontinuity from substitu-
tion

The technique of integration by substitution is a stan-
dard topic in calculus textbooks and is one that is used
by some integration routines, in particular, by those in
Derive. An aspect of the technique that is rarely em-



which satisfies the conditions of the fundamental theo-
rem, we make the substitution s = 1/ to get

/ etlr dr / e’ds

(IT+e/m222 " | (1+e)?"
Integrating the last expression and substituting for s in
the usual way, we obtain

1
1+ell

)

which contains a spurious discontinuity at z = 0. In
order to develop an algorithm that will remove this dis-
continuity, we must decide first where it comes from.
The method of integration will influence, to some ex-
tent, how we assign the cause. Since our focus here
is the method of substitution, we turn to the following

theorem (Jeffrey & Rich 1993)

Theorem. Given a function f that is continuous on an
interval [a, b] and a function ¢ that is differentiable and
monotonic on the interval [¢~1(a), $~1(b)], the function

¢~ () e
o) = [ sews@a= [ ) ds

is continuous for z € [a, b].

The relevance of this theorem comes about as fol-
lows. We suppose that we wish to obtain an integral
of f(x) that is valid on the domain of maximum ex-
tent. We further suppose that our integration system
can already return an indefinite integral on a domain
of maximum extent for the function f(é(¢))¢’(¢). The
theorem states that the second integral might be discon-
tinuous at points where ¢ is singular. For our example,
it follows that the point = 0 might be (and is) a point
of discontinuity. We could at this point jump immedi-
ately to introducing a rectifying transformation, but we
can place it on a more formal footing as follows.

Suppose f b



4 Complex-valued integrands

We now consider some problems associated with the in-
tegration of a complex-valued function f(z) of a real
variable x. The emphasis here will be less on estab-
lishing algorithms, and more on discussing the prob-
lems that exist and ways of tackling them. There are
two reasons for considering integration problems of this
type. First, because of the way in which many algo-
rithms work, an integration problem posed by a user
entirely in real terms might be evaluated symbolically
by converting the integral into one taking complex val-
ues. Second, a contour integration in the complex plane
is typically converted into a complex integral over a real
variable by describing the contour of integration para-
metrically. In this latter case, many textbooks of com-
plex analysis give the impression that all such integrals
can be reduced to real integrals. Thus they write that

the contour integral
/ f(z)dz
c

can be evaluated by describing the contour parametri-
cally as z = ¢(s) and then separating the integrand into
real and imaginary parts f(z) = f(¢(s)) = u(s) +iv(s).
In practice, however, this last step is purely formal. In
many cases the decomposition into u + v is impracti-
cal and, even if it were successful, would only lead to
real integrals too difficult for the CAS to evaluate. For
example, the integral

N2]'? de =
/u+«1+)] o = 3

is simple as a complex function, but the separation into
Cartesian form makes it too difficult for Maple or Derive
(although not Axiom):

[14 (1+14)2]"/? =

1 Vo
— 202+ 22+ 1+ +1
=V

1sgn x
+ \/\/21‘2—}—235—}—1—35—1.
V2

The main aim of this section is to discuss some un-
satisfactory aspects of the formula

f/(S) = 10 S
[ Fitas =108 1) (7

and to discuss ways of improving it. To focus the dis-
cussion, we consider a specific example. Different CAS
give different expressions for the following integral, two

such expressions he expres . § @vere byferen  wi v kv 14 PN W v ng A W% A8

[14 (14 1)2]3/?




for real a 1s £ = n7. Hence

adz . —iz -
/m:zln(ae —}-1)—}-2”:[&”[‘[(1‘—7171').

If |a| < 1, then K, = 0 for all n, as several systems can
obtain correctly. If @ > 1, then

K, = {Zﬂ' , nodd,

0, neven.

If a < —1, then

K — —2m, n even,
=0, n odd.

Thus, using also the result that

iH(r—np—q)z [I;QJ :

n=1

where | | is the floor function, we obtain

/ adz _
a+exp(iz)

iln(ae™® 4+ 1), la] <1,
iln(ae™® + 1) 4+ 27| (z —7)/27] , a>1.
iln(ae™® + 1) — 27|z /27 | a<—1.

Further, since for a > 1,
iln(ae™ 4+ 1) + 27| (x — ) /27| =z + iln(a + €7) |
with a similar identity when a < —1, we obtain

a da z:ln(ae_“”.—l— 1), la] < 1,
/7.: iln(a+e*)+ 2, a>1,
a+ exp(iz) itln(—a—€")+2, a<-—1.

The conclusion to be drawn from this exercise is
that (10) does indeed improve on (7) as an integration
formula, but the implementation of (10) would entail
significant computation; and the range of problems for
which it could be completed successfully is an open ques-
tion.

5 Other sources of discontinuity

In the previous sections, the discontinuities considered
arose because of the way in which the integral was eval-

1 e@'rand gon



matter how quickly and efficiently it is obtained. A final
comment concerns the interaction between the standard
textbooks and CAS. The fact that equation (10) is never
seen in a book on complex analysis does not mean that
it does not have to be taken into account. These books
are written assuming a high level of abstraction and
generality, and this is a luxury the CAS cannot share, if
they hope to return correct and explicit results to their
users.
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