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.LUDecomposition(A, method5FractionFree);
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The upper triangular matrix has polynomial entries.

However, there are still fractions in the lower triangular

matrix. In this paper, we call this factoring a partially

fraction free LU factoring. We recall the corresponding
algorithm below.

In addition, there are symbolic methods based on modular

methods for solving systems with integer or polynomial coef-

ficients exactly, such as p–adic lifting [16,17], computation

modulo many different primes and using Chinese remainder

theorem, or the recent high order lifting techniques [18,19],

etc. However, the fraction free algorithms we introduce in

this paper enable our computations over arbitrary integral
domains. Moreover, at the complexity level, the new fraction

free LU factoring algorithm can save a logarithmic factor

over existing fraction free LU factoring algorithms.

Section 2 presents a format for LU factoring that is

completely fraction free. In Section 3, we give a comple-

tely fraction free LU factoring algorithm and its time

complexity, compared with the time complexity of a par-
tially fraction free LU factoring. We show that partially

fraction free LU factoring costs more than the completely

fraction free LU factoring except for some special cases.

Benchmarks follow in Section 4 and illustrate the com-

plexity results from Section 3. The last part of the paper,

Section 5, introduces the application of the completely

fraction free LU factoring to obtain a similar structure

for a fraction free QR factoring. In addition, it introduces
the fraction free forward and backward substitutions to

keep the whole computation in one domain for solving a

linear system. Section 6 gives our conclusions.

2 Fraction free LU factoring

In 1968, Bareiss [7] pointed out that his integer-preserving

Gaussian elimination (or fraction free Gaussian elimina-

tion) could reduce the magnitudes of the entries in the trans-

formed matrices and increase the computational efficiency

considerably in comparison with the corresponding stand-

ard Gaussian elimination. We also know that the conven-

tional LU decomposition is used for solving several linear

systems with the same coefficient matrix without the need to
recompute the full Gaussian elimination. Here we combine

these two ideas and give a new fraction free LU factoring.

In 1997, Nakos, Turner and Williams [1] gave an

incompletely fraction free LU factorization. In the same

year, Corless and Jeffrey [15] gave the following result on

fraction free LU factoring.

Theorem 1 [Corless-Jeffrey] Any rectangular matrix

A [Zn|m may be written

F1PA~LF2U , ð2Þ

where F15 diag(1, p1, p1p2, …, p1p2…pn2 1), P is a per-

mutation matrix, L [Zn|n is a unit lower triangular,

F25 diag(1,1,p1,p1p2,…, p1p2…pn2 2), and U [Zn|m are

upper triangular matrices. The pivots pi that arise are in Z.

This factoring is modeled on other fraction free defini-

tions, such as pseudo-division, and the idea is to inflate the

given object or matrix so that subsequent divisions are

guaranteed to be exact. However, although this model is

satisfactory for pseudo-division, the above matrix factor-

ing has two unsatisfactory features: firstly, two inflating

matrices are required; and secondly, the matrices are

clumsy, containing entries that increase rapidly in size. If

the model of pseudo-division is abandoned, a tidier factor-

ing is possible. This is the first contribution of this paper.

Theorem 2 Let I be an integral domain and

A5 [ai,j]i( n,j(m be a matrix in In|m with n(m and such

that the submatrix [ai,j]i,j( n has full rank. Then, A may

be written

PA~LD{1U ,

where
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P is a permutation matrix, L and U are triangular as

shown, and the pivots pi that arise are in I. The pivot pn
is also the determinant of the matrix [ai,j]i,j( n.

Proof For a full-rank matrix, there always exists a

permutation matrix such that the diagonal pivots are

non-zero during Gaussian elimination. Let P be such a

permutation matrix for the full-rank matrix A (We will

give details in the algorithm for finding this permutation

matrix). Classical Gaussian elimination shows that PA

admits the following factorization.
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Hence, these are in I.
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This new output is better than the old one for the fol-

lowing two aspects: first, this new LU factoring form

keeps the computation in the same domain; second, the

division used in the new factoring is an exact division,

while in Example 1 fraction free LU factoring the division

needs gcd computations for the lower triangular matrix as
in Eq. 1. We give a more general comparison of these two

forms on their time complexity in Theorems 5 of Section 3.

3 Completely fraction free algorithm and
time complexity analysis

Here we give an algorithm for computing a completely

fraction free LU factoring (CFFLU). This is generic code;

an actual MAPLE implementation would make additional

optimizations with respect to different input domains.

Algorithm 1 Completely Fraction free LU factoring

(CFFLU)

Input: A n6m matrix A, with m> n.

Output: Four matrices P, L, D, U, where P is a n6 n

permutation matrix, L is a n6 n lower triangular matrix,

D is a n6 n diagonal matrix, U is a n6m upper triangu-

lar matrix and PA5LD21U.

U :5 Copy(A); (n,m) :5 Dimension(U): oldpivot :5 1;
L:5IdentityMatrix(n,n, ‘compact’5false);
DD:5ZeroVector(n, ‘compact’5false);
P :5 IdentityMatrix(n, n, ‘compact’5false);
for k from 1 to n21 do

if U[k,k] 5 0 then
kpivot :5 k+1;
Notfound :5 true;
while kpivot , (n+1) and Notfound do

if U[kpivot, k] ,. 0 then
Notfound :5 false;

else
kpivot :5 kpivot +1;

end if;
end do:
if kpivot 5 n+1 then

error ‘‘Matrix is rank deficient’’;
else

swap :5 U[k, k..n];
U[k,k..n] :5 U[kpivot, k..n];
U[kpivot, k..n] :5 swap;
swap :5 P[k, k..n];
P[k, k..n] :5 P[kpivot, k..n];
P[kpivot, k..n] :5 swap;

end if:
end if:
L[k,k]:5U[k,k];

DD[k] :5 oldpivot * U[k, k];
Ukk :5 U[k,k];
for i from k+1 to n do

L[i,k] :5 U[i,k];
Uik :5 U[i,k];
for j from k+1 to m do

U[i,j]:5normal((Ukk*U[i,j]2U[k,j]*Uik)/oldpivot);
end do;
U[i,k] :5 0;

end do;
oldpivot:5 U[k,k];

end do;
DD[n]:5 oldpivot; %
For comparison, we also recall a partially fraction free

LU factoring (PFFLU).

Algorithm 2 Partially Fraction free LU factoring

(PFFLU)
Input: A n6m matrix A.

Output: Three matrices P, L and U, where P is a n6 n

permutation matrix, L is a n6 n lower triangular matrix,

U is a n6m fraction free upper triangular matrix and

PA5LU.

U :5 Copy(A); (n,m) :5 Dimension(U): oldpivot :5 1;
L:5IdentityMatrix(n,n, ‘compact’5false);
P :5 IdentityMatrix(n, n, ‘compact’5false);
for k from 1 to n21 do

if U[k,k] 5 0 then
kpivot :5 k+1;
Notfound :5 true;
while kpivot , (n+1) and Notfound do

if U[kpivot, k] ,. 0 then
Notfound :5 false;

else
kpivot :5 kpivot +1;

end if;
end do:
if kpivot 5 n+1 then

error ‘‘Matrix is rank deficient’’;
else

swap :5 U[k, k..n];
U[k,k..n] :5 U[kpivot, k..n];
U[kpivot, k..n] :5 swap;
swap :5 P[k, k..n];
P[k, k..n] :5 P[kpivot, k..n];
P[kpivot, k..n] :5 swap;

end if:
end if:
L[k,k]:51/oldpivot;
Ukk :5 U[k,k];
for i from k+1 to n do

L[i,k] :5 normal(U[i,k]/(oldpivot * U[k, k]));
Uik :5 U[i,k];
for j from k+1 to m do

U[i,j]:5normal((Ukk*U[i,j]2U[k,j]*Uik)/oldpivot);
end do;
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U[i,k] :5 0;
end do;
oldpivot:5 U[k,k];

end do;
L[n,n]:5 1/oldpivot; %
The main difference between Algorithm 1 and Algorithm

2 is that Algorithm 2 uses non-exact divisions when com-

puting the L matrix. The reason we give these two algo-

rithms is that we want to show the advantage of a fraction

free output format.

Theorem 3 Let A be a n6m matrix of full rank with

entries in a domain I and n(m. On input A, Algorithm 1

outputs four matrices P,L,D,U with entries in I such that

PA5LD21U, P is a n6 n permutation matrix, L is a

n6 n lower triangular matrix, D is a n6 n diagonal

matrix, U is a n6m upper triangular matrix.

Furthermore, all divisions are exact.

Proof In Algorithm 1, each pass through the main loop

starts by finding a non-zero pivot, and reorders the row

accordingly. For the sake of proof, we can suppose that
the rows have been permuted from the start, so that no

permutation is necessary.

Then we prove by induction that at the end of step k,

for k5 1,…,n2 1, we have

N QD½1�~A
(0)
1,1 and D½i�~A

(i{2)
i{1,i{1A

(i{1)
i,i for i5 1,…,k,

N L½i, j�~A
(j{1)
i, j for j5 1,…,k and i5 1,…,n,

N U ½i, j�~A
(i{1)
i, j for i5 1,…,k and j5 i,…,m,

N U ½i, j�~A
(k)
i, j for i5 k + 1,…,n and j5 k + 1,…,m,

N all other entries are 0.

These equalities are easily checked for k5 1. Suppose

that this holds at step k, and let us prove it at step k + 1.

Then,

N for i5 k + 1,…,n, L[i,k + 1] gets the value U ½i, kz1�
~A

(k)
i, kz1,

N D[k + 1] gets the value A
(k{1)
k, k A

(k)
kz1, kz1,

N for i,j5 k + 2,…,m, U[i,j] gets the value

A
(k{1)
k, k A

(k{1)
i, j {AA
(



and

Li,k~A
(k{1)
i,k , Dk,k~A

(k{2)
k{1,k{1A

(k{1)
k,k :

Lemma 2 If every entry ai,j of the matrix A5 [ai,j]n6 n is

a univariate polynomial over a field K with degree less

than d, we have deg A
(k)
i,j

� �
fkd.

If every entry ai,j of the matrix A5 [ai,j]n6 n is in Z and

has length bounded by ‘, we have l A
(k)
i,j

� �
fk(‘z log k).

If every entry of the matrix A5 [ai,j]n6 n is a univari-

ate polynomial over Z½x� with degree less than d and coef-

ficient’s length bounded by ‘, we have deg A
(k)
i,j

� �
fkd and

l A
(k)
i,j

� �
fk(‘z log kzd log 2).

Proof If ai,j [Z½x� has degree less than d, from Lemma

1, we have deg A
(k)
i,j

� �
fkd. If ai,j [Z has length bounded

by ‘, from Eq. 3 and Lemma 1 with m5 0, we have

l A
(k)
i,j

� �
fk(‘z log k). If ai,j [Z½x� has degree less than d

and coefficient’s length bounded by ‘, from Eq. 3 and

Lemma 1 with m5 1, we have deg A
(k)
i,j

� �
fkd and

l A
(k)
i,j

� �
fk(‘z log kzd log 2). %

In the following part of this section, we want to dem-

onstrate that the difference between fraction free LU fac-

toring and our completely fraction free LU factoring is

the divisions used in computing their lower triangular

matrices L. We discuss here only three cases. In case 1,

we will analyze the cost of two algorithms with A [K½x�,
where K is a field, i.e., we only consider the growth of

degree during the factoring. In case 2, we will analyze the

cost of two algorithms with A [Z, i.e. we only consider the

growth of length during the factoring. In case 3, we will

analyze the cost of both algorithms with A [Z½x�. For

more cases, such as A [Z x1,:::,xm½ �, the basic idea will

be the same as these three basic cases.

Theorem 4 For a matrix A5 [ai,j]n6 n with entries in

K½x�, if every ai,j has degree less than d, the time complex-

ity of completely fraction free LU factoring for A is

bounded by O(n3M(nd)) operations in K.

For a matrix A5 [ai,j]n6 n with entries in Z, if every ai,j
has length bounded by ‘, the time complexity of comple-

tely fraction free LU factoring for A is bounded by

O n3M n log nzn‘ð Þ� �
word operations.

For a matrix A5 [ai,j]n6 n with univariate polynomial

entries in Z½x�, if every ai,j has degree less than d and has

length bounded by ‘, the time complexity of completely

fraction free LU factoring for A is bounded by

O n3M n2d‘znd2
� �� �

word operations.

Proof Let case 1 be the case ai;j [K½x� with d5maxi,j
deg(ai,j) + 1, case 2 be the case ai;j [K with ‘~maxli,j ai,j

� �
and case 3 be the case ai,j [Z½x� with d5maxi,j deg(ai,j) + 1

and ‘~maxli,j ai,j
� �

. From Lemma 2, at each step k,

deg A
(k)
i,j

� �
fkd in case 1 and l A

(k)
i,j

� �
fk(‘z log k) in case

2, and l (



log log (nd(‘zd))zndM(n(‘z log nzd) log (nd(‘zd)))

log (n(‘zd)).

Proof As above, case 1 is ai;j [K½x� with d5maxi,j deg

(ai,j) + 1, case 2 is ai,j [Z with ‘~maxli,j ai,j
� �

and case 3 is

ai,j [Z½x� with d5maxi,j deg(ai,j) + 1 and ‘~maxli,j ai,j
� �

.

From Lemma 2, at each step kth, deg A
(k)
i,j

� �
fkd in case 1,

l A
(k)
i +

kd~ max)
i



of the time of completely fraction free LU factoring with

the logarithm of the size of matrix (Fig. 2). If we use the

Maple command Fit(a + b?t,x,y,t) to fit it, we find a slope

equal to 4.335. This tells us that the relation between the

time used by completely fraction free LU factoring

and the size of the matrix is t5O(n4.335). In the view



5 Application of completely fraction free LU
factoring

In this section, we give applications of our completely

fraction free LU factoring. Our first application is to solve

a symbolic linear system of equations in a domain. We

will introduce fraction-free forward and backward sub-
stitutions from Ref. [1]. Our second application is to get a

new completely fraction free QR factoring, using the rela-

tion between LU factoring and QR factoring given in

Ref. [22].

5.1 Fraction free forward and backward substitutions

In order to solve a linear system of equations in one

domain, we need not only fraction free LU factoring of

the coefficient matrix but also fraction free forward sub-

stitution (FFFS) and fraction free backward substitution

(FFBS) algorithms.

Let A be a n6 n matrix, and let P,L,D,U, be as in

Theorem 3 with m5 n.

Definition 3 Given a vector b in I, fraction free forward

substitution consists in finding a vector Y, such that

LD21Y5Pb holds.

Theorem 6 The vector Y from Definition 3 has entries in

I.

Proof



Yi~
Di,i

Li,i
bPi

{
Xi{1

k~1

Li,kYk

" #
,

where bPi
~

Pn
j~i



Because HT H is symmetric and both U and (DL21)T are

upper triangular matrices, HT H must be a diagonal

matrix. So the columns of H are left orthogonal and in

In based on Theorem 6.

Based on Eq. 7, we have AT5LD21HT, i.e., A5H
(LD21)T5H(DT)21LT5HD21LT. Set R5LT, then R is a

fraction free upper triangular matrix. %
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We can verify that the square of the second row on the

right side of matrix U is not equal to the diagonal of the

left side of the matrix U. It means the observation of

Pursell and Trimble is not valid in this example.

The fraction free QR factoring of matrixC is as follows:

HD{



