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Figure 1: The ranges for the branches of the W function.
Closure information is not indicated on the figure. Branches
are closed on their top boundaries. This means in particu-
lar that onl is f e§y



2.1 Some series



As before, when w = W (expa) is rational the Taylor
series for W(expr) about x = a has rational coefficients.
For example, this occurs when a = 1, giving
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This series has radius of convergence /4 + 72, which is

the distance to the nearest singularity at x = —1 + ¢w. This
gives the asymptotics of ¢, (1).
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2.5 Branches in equation (24)
Theorem: The unique solution of y +lny =r is

y=W_x(e) (29)

where KC(x) is the unwinding number of & (see [6]), unless
x =t+im for —oo <t < —1, in which case there are exactly
two solutions, y = W_1(expr) and y = Wo(expr).

Proof. Taking exponentials of both sides of y +Iny ==«
we see that if y is a solution, then y = Wi (expr) for some k.
To go in the other direction, we use the relation

Wi(x) + In Wg(x) = Inx + 27wik (30)

unless £k = —1 and = € [-1/e,0), when W_;(r) +
InW_1(x) = Inx. For a proof of this relation see [12]. We
replace x in the above by expr, and since

Ine* =w + 2mik(x) (31)

(indeed this defines the unwinding number K(x), see [6]), we
have that

Wi(e®) + In Wi(e®) = + 2mi (K(x) + k) (32)

unless £ = —1 and expr € [—1/e,0), in which case we
replace k by 0 on the right hand side of (32). Thus we
have that Wi(expx) + In Wi(expr) = » if and only if
k = —K(x), unless k = —1, as claimed. It is easy to see
that both £ = —1 and k£ = 0 work if & = ¢ + ¢7 for some
te(



> op({solve(series(subs(w=-1+u, z=-exp(-1)
+ t72% exp(-1) ,wxexp(w)-2z),u),u)}) ;
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for the root that does not simplify. Using the differential
equation
d
p3



These series were further developed and rearranged
in [11] using the new variable { =1/(1 + &) to get

w



In the case n — oo, one can show that v, — W(x) if
|[W(x)| > 1, while v, = W(x) in [W(x)| < 1if n - —oc.

In fact this iteration turns out to be completely equiva-
lent to the well-studied exponential iteration defining

2

v® (78)

and this connection is discussed in detail elsewhere [7]. For
our purposes we note that this gives us an infinite number
of series for W (x), since

= uv,e’ e (79)

as can easily be established by induction. This gives us a
family of bi-infinite sequences of series

_ qr (vn, + 2mwildy (vy)) p_ﬁ
Wele) = ;} (1 4+ vn + 2milhe (vs)) 2R~ Kl (80)

for W(x). We may add a further infinity of series by us-
ing different branches for In, by putting v((]m) = In,»(x) and
pém) = —Inln,,



More generally, for any b and ¢ and any power series

G(z) = Zami (90)

i>0

with ao # 0, the following expansion holds:
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where the polynomials A, are computable by Ay = ao,
ni1(x) = (b—c+n)A,(z) — AL (z) and A,(0) = an.

4.11 Series for W (pexp(it))

If y = W(pexp(it)) for p M 0 and —7 < ¢t < 7, then define
v by
W(pe't) =W(p)+it+v. (92)

Then Wexp W = pexp(it) implies
(W (p) +it + U)ew(p)+it+” = peit (93)

or, using W (p) exp(W (p)) = p,
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But this is just (70) with o = 1/W (p) and 7 = —it/W (p),
and thus all of our fundamental series solutions to (70) ap-
ply! The nicest one is (75), which splits into separate series
for the real and imaginary parts of W (pexp(it)). We have

o) @)
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and clearly all the odd terms are purely imaginary and the
even terms are real.

5 Infinite Products

From the relation W(x) = rexp(—W (x)) it is easy to see
that any series for W(x) may be trivially transformed into
an infinite product. For example, from the series (6) we have

W)=1r H exp(%;n) (96)

n>1

but this of course gives us no essentially new information.
However, the series (83) gives us

W(x) =1n(e) [] (1 +pa/va) (97)

n=0

in terms of the iterates of (76), and this is a simpler and
more natural representation if nothing else.

6 A Final Pair of Expansions

The iterations (76-77) may be used to show that W(x) can
be written as
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