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Abstract. This paper describes continuing progress on the development
of a repository of transformation rules relevant to inde�nite integration.
The methodology, however, is not restricted to integration. Several opti-
mization goals are being pursued, including achieving the best form for
the output, reducing the size of the repository while retaining its scope,
and minimizing the number of steps required for the evaluation process.
New optimizations for expression size are presented.

1 Introduction

The methods of integration can be conveniently divided into several categories.

{ Look-up tables. These are collections or databases, such as [4], which try to
list all possible integrals, each in a general form. Many special cases are also
listed separately.

{ Rule-based rewriting. The databases used are smaller than those for the
look-up tables. They contain rules for transforming a given integral into one
or more simpler integrals, together with rules for completing the evaluation
in terms of known functions.

{ Algorithmic methods. Under this heading, we include Risch integration,
Rothstein-Trager-Rioboo integration, and others, which require extended
computations.

A table of reduction rules can serve more roles than merely the database for an
evaluation system; it can also serve as a repository for mathematical knowledge.
Each rule can be annotated with information on its derivation, with references
to the literature, and so on. An evaluation system can display transformations
as they are used, for the information of users.

Here, we consider the repository of transformation rules for inde�nite in-
tegrals that is described in [5, 6]. We shall refer to it by the acronym Rubi:
RUle-Based Integrator. We review the general state of the repository and then
focus on particular aspects, namely, its e�ciency, and the selection of output
forms. Procedures have been written in Mathematica to implement the evalu-
ation of integrals using the repository, and these procedures have been the basis
of testing and comparisons.





The construction and selection of the rules is based on the principle of mutual
exclusivity. For a database of reduction rules to be properly de�ned, at most one
of the rules can be applicable to any given expression. Mutual exclusivity is crit-
ical to ensuring that rules can be added, removed or modi�ed without a�ecting
the other rules. Such stand-alone, order-independent rules make it possible to
build a rule-based repository of knowledge incrementally and as a collaborative
e�ort.

3 Performance Comparison with Other Systems

In order to provide quantitative evidence of the bene�ts of rule-based integra-
tion, we present a comparison of the performance of various computer algebra
systems on a test suite containing 7927 problems. The performance measure is



was developed using the test suite, its good performance is to be expected, but
even so, the favourable comparison with the other systems remains valid.

Although the test suite of 7927 problems is large, the problems themselves



Fig. 1. The node count for expressions returned by Mathematica 7 for the integral in
(1). The horizontal axis shows values of the exponent m, while the vertical axis shows
the node count for the corresponding expression for the integral.
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Fig. 2. The node count for expressions returned by Maple 13 for the integral in (1).
The horizontal axis shows values of the exponent m, while the vertical axis shows the
node count for the corresponding expression for the integral.



3. N: bc� ad = 0, m + n + 1 = 0

T:

Z
(a + bx)m(c + dx)n dx! (a + bx)m+1(c + dx)n ln(a + bx)=b .

4. N: bc� ad = 0, m + n + 1 6= 0

T:

Z
(a + bx)m(c + dx)n dx! (a + bx)m+1(c + dx)n

b(m + n + 1)
.

5. N: bc� ad 6= 0

T:

Z
(a + bx)�1(c + dx)�1 dx! ln(a + bx)� ln(c + dx)

bc� ad
.

6. N: bc� ad 6= 0, m + n + 2 = 0, n 6= �1

T:

Z
(a + bx)m(c + dx)n dx! � (a + bx)m+1(c + dx)n+1

(n + 1)(bc� ad)
.

7. N: m + n + 1 = 0, m > 0, bc� ad 6= 0

T:

Z
(a + bx)m(c + dx)n dx! � (a + bx)m

dm(c + dx)m

+
b

d

Z
(a + bx)m�1(c + dx)�m dx .

8. N: bc� ad 6= 0, m + n + 1 6= 0, n > 0

T:

Z
(a + bx)m(c + dx)n dx! (a + bx)m+1(c + dx)n

b(m + n + 1)

+
n(bc� adad+m + n + 1)

+a + + (c + dx



2. It should be noted that rule 6 is in fact a special case of rule 9. It is included
because it is convenient to have an explicitly non-recursive entry.

3. Rules 8 and 9 respectively increment and decrement one of the exponents of
the integrand. Unlike the other rules, it is not always obvious which of these
two rules should be applied to a given integrand in order to minimize the
number of steps required to integrate it. This choice is the subject of our
optimization.

5 Integration strategies

The rules stated above describe a complete strategy for integration of the given
class of integrals. The strategy is not unique, however, and other strategies might
be more e�cient. We therefore describe two other strategies and compare them
with the preferred strategy.

5.1 Preliminary strategy 1

We replace rule 8 with a rule 8a, in which the simpli�cation conditions are
removed. Thus we have

8a. N: bc� ad 6= 0, m + n + 1 6= 0, n > 0

T:

Z
(a + bx)m(c + dx)n dx! (a + bx)m+1(c + dx)n

b(m + n + 1)

+
n(bc� ad)

b(m + n + 1)

Z
(a + bx)m(c + dx)n�1 dx .

The e�ect of removing the restrictions is that all integrals will be reduced until
one of the exponents becomes zero, at which point rules 1 to 6 will terminate
the reduction. When this strategy is applied to the test case (1), the sizes of the
results are as shown in �gure 3.

The dip for the case m = 10 is important. For this case, rule 6 provides a
direct one-step integration to a very compact form:Z

x10 dx

(1 + x)12
=

x11

11(1 + x)11
:

This possibility is not noticed by the standard integrators of Mathematica and
Maple, as can be seen in �gures 1 and 2.

5.2 Preliminary strategy 2

We now remove the restrictions from rule 9, and place it above rule 8. Thus the
rule becomes

9a N: bc� ad 6= 0, n + 1 6= 0

T:

Z
(a + bx)m(c + dx)n dx! � (a + bx)m+1(c + dx)n+1

(n + 1)(bc� ad)

+
(m + n + 2)b

(bc� ad)(n + 1)

Z
(a + bx)m(c + dx)n+1 dx
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Fig. 3. The node count for expressions returned by the �rst alternative integration
strategy for the integral in (1). The horizontal axis shows values of the exponent m,
while the vertical axis shows the node count for the corresponding expression for the
integral.

The e�ect of this is to increase one negative exponent until rule 6 can be applied.
The resulting statistics on the size of integral expressions is shown in �gure 4.
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Fig. 4. The node count for expressions returned by the second alternative integration
strategy for the integral in (1). The horizontal axis shows values of the exponent m,
while the vertical axis shows the node count for the corresponding expression for the
integral.

The dip at m = 0 is a result of rule 2 being applied before the general rules.

5.3 An optimal strategy

Clearly, one can obtain smaller expression sizes if one can switch between the
two strategies just tested. This is what is done in rules 8 and 9 as presented. For





known solutions are J(0; N; P ) and J(M; N; N). It is straightforward to derive
the equality

J(m; n; p) = (1=b)J(m� 1; n + 1; p)� (a=b)J(m� 1; n; p) (4)

An obvious strategy for m > 0 is to use this relation to reduce all integrals to
the form J(0; N; p). Thus, using the above conventions for describing a reduction
rule, the rule reads

11. T: J(m; n; p)! 1
b J(m� 1; n + 1; p)� (a=b)J(m� 1; n; p)

S: m 2 Z, m > 0, n; p 2 Q, n� p < 0



Next, Mathematica:
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Finally, Maple:
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There is a disadvantage, however, to stepwise application of the above reduc-
tion, a disadvantage well known in other contexts. This is the repeated evaluation
of the same integral during recursive calls. The standard example of this e�ect is
the recursive evaluation of Fibonacci numbers. This is paralleled in applications
of (4) and (6). This e�ect was one reason that Maple introduced its option

remember early in its development. The important additional feature present
here, that is not present in the Fibonacci example, is the possibility of di�erent
simpli�cation options directing the computation to simpler results.

7 Concluding remarks

In [5], a number of advantages of rule-based simpli�cation were listed. These
included (see reference for details).

{ Human and machine readable.

{ Able to show simpli�cation steps.

{ Facilitates program development.

{ Platform independent.

{ White box transparency.

{ Fosters community development.

{ An active repository.

In this paper we have shown that an additional advantage of rule-based
evaluation, illustrated in the integration context, is greater simplicity of results.
Finally, we wish to point out that the integration repository described here has
been published on the web [6], and is available for viewing and testing by all
interested people.
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RuleBasedMathematics

Test Items Rubi: Rule-based Integrator

Integrand Number Optimal Messy Inconc. Invalid

Rational 1426 1424 1 1 0
Algebraic 1494 1483 8 3 0

Exponential 456 452 0 4 0
Logarithmic 669 667 0 2 0

Trigonometric 1805 1794 8 3 0
Hyperbolic 1386 1379 6 1 0
Inverse trig 283 281 0 2 0

Inverse hyperbolic 342 335 2 5 0
Special functions 66 66 0 0 0

Percentages 99.4% 0.3% 0.3% 0%

Table 1. The integration test suite, with the numbers of problems broken down in cat-
egories. The performance of the Rule-based Integrator (Rubi) is given using measures
described in the text.



Test Items Maple

Integrand Number Optimal Messy Inconc. Invalid

Rational 1426 1176 249 0 1
Algebraic 1494 1126 277 45 46

Exponential 456 351 63 37 5
Logarithmic 669 284 161 194 30

Trigonometric 1805 1054 619 83 49
Hyperbolic 1386 521 641 181 43
Inverse trig 283 206 64 5 8

Inverse hyperbolic 342 159 96 55 32
Special functions 66 38 1 25 2

Percentages 62.0% 27.4% 7.9% 2.7%

Table 2. The performance of Maple on the test suite, using measures described in the
text.

Test Items Mathematica

Integrand Number Optimal Messy Inconc. Invalid

Rational 1426 1239 187 0 0
Algebraic 1494 1228 246 18 2

Exponential 456 406 32 12 6
Logarithmic 669 581 84 4 0

Trigonometric 1805 1212 573 3 17
Hyperbolic 1386 911 464 6 5
Inverse trig 283 211 62 10 0

Inverse hyperbolic 342 198 140 3 1
Special functions 66 53 9 4 0

Percentages 76.2% 22.7% 0.8% 0.4%

Table 3. The performance of Mathematica on the test suite, using measures described
in the text.


