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The Lambert W function has a number of integral expressions, including integrals of Bern-
stein, Thorin, Poisson, Stieltjes, Pick and Burniston-Siewert types. We give explicit integral
expressions for W for each of these types. We also give integrals for a number of functions
containing W.

1. Introduction

The Lambert W function is a multivalued inverse of the mapping W @ WeW . Its
branches, denoted by Wy (k 2 Z), are de ned through the equations [10]

8z 2C,; Wi (2) exp(Wk(2)) =2z ; D)
Wi(z) Ingzas<z ¥ 1 2)
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Definition 2.1 A function ¥ : (0; 1) ¥ R is called a Stieltjes function if it
admits a representation

yA 1
_ d (1) .
f(x)—a+ . m (X>0) ) (3)

here a is a non-negative constant and is a positive measure on [0; L) such that
RO p
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where the unknown function (t) can be determined using the Stieltjes-Perron
inversion formula [12, p.591]

1 Z
(t)== lim = W!( +is)d
s 10+ 1
for all continuity points on the t-axis. Since (t) is de ned up to an arbitrary
constant, one can set, after integrating,

L lim =w( t+is) = T=wo( 1) : (10)

(t) N S !I 0+
where the limit uses the continuity from above of W on its branch cut. The same
result can be obtained using one of Sokhotskyi’s formulas [13, p. 138].

To verify that (t) satis es the conditions in De nition 2.1, we use [15, lemma
1.1] to trim the domain of integration in (9) to 1=e <t < 1. In addition, (t) can
Re regarded as a positive measure such that d (t)=dt = o(1=t) at large t. Therefore

1}e(l +1) 1d (t) < 4 as required. Thus (9) takes the form

YA 1 —
1 1 d=Wo( O .

0 —_
W@ == i3t a (1)

Changing to the variable v = =Wy( t) as before, we obtain (8).

Remark 2 Formula (11) can also be found by considerations similar to those used
in [15] to prove (5). Moreover, (11) is a result of di erentiating (5) with subsequent
integration by parts. The representation (11) is also found in [21].

Remark 3 Comparing formulae (5) and (11) shows that the latter can be formally
obtained from the former by replacing the ratios W (z)=z and (t)=t respectively
with the derivatives dW (z)=dz and d (t)=dt, where (t) is de ned by (10).

Corollary 2.4

SNV gveoty ~ gy = P, P2N: (12)
0 v p!

Proof The integral (9) can be written as

n
( 1)” llzn 1 et 1 div ; (13)
he1 n! o Z t

where t is the same as in (6) and the left side is the Taylor series for W' and is
convergent for jzj < 1=e. Since jtj > 1=e and therefore jzj < jtj, we can expand
(z 1t 'innon-negative powers of z. Equating the coe cients of like powers of z
we obtain the equality

Z
n" 1 dv

(1)n1

n! 0 tn

which after substituting for t results in (12).

It is obvious that if the integral (12) is known, then going back from it to (13)
we nd (8). The integral (12) was conjectured by Nuttall for real p 0 [20];
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By [15, Lemma 1.2], the measure =W ( t) satis es the requirements needed for
[23, Theorem 8.2]. Changing to the variable v = =W ( t) as before and taking a
holomorphic extension of the result to the cut z-plane Cn( 21;0] satisfying near
conjugate symmetry, we obtain (22).

Remark 1 In the terminology of [23, p.75], the integral form (23) is the Thorin
representation of W function and (t) ==W( t)= is the Thorin measure of W.

Remark 2 Di erentiating the representation (22) for W (z) gives formula (8) for
W!(2).

Remark 3 The representation (23) (up to changing t to t) was obtained in [7] as
a dispersion relation for the principal branch of W function. The representations
(18)-(19) and (23) are also found in [21].

Note that by (19) function ”( ) is completely monotonic, as it should be by
De nition 3.2.

4. Pick representations

Definition 4.1 [4, De nition 4.1] A function f(z) is called a Pick function (or
Nevanlinna function) if it is holomorphic in the upper half-plane =z > 0 and
=f 0 there.

A Pick function f(z) admits an integral representation [4, Theorem 4.4]

Za 1+1tz

where
oty he— Tl TCY)
and is a positive measure which satis es
1 z z
lim = =f(t+is)”()dt=  ~*(t)d (t) (26)

for all continuous functions > : R ¥ R with compact support. The formula (24)
with the integral written in terms of a measure d~(t) = (1 +t?) d (t) is called
a Nevanlinna formula [17, p. 100].

Since W (z) is a holomorphic function in the upper half-plane =z > 0, where
=W (z
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where o = <W (i) = 0:3746990::,

(1+zt(v)) v2+ (1 vecotv)?

K(z;v) = @ t) A+ EW) ; (28)
and t(v) is de ned by (6).
Proof We apply formulae (25) and (26) to function f(z) = W (z) to obtain
_ . — i WAY) _1_ :
0 =<W(); bo—yll!m1 iy d (t) =—=W()dt:
Thus bp = 0, and since =W (t) =0 for t 1=e, we obtain
Z gz
W(z) = o+1 Ly =W (t)dt (=z>0): (29)

1t 2)(A+1)

By the change of variable v = =W (t) in the integral (29) (see (6)) we obtain
formula (27), which is also valid in the lower half-plane =z < 0 in accordance with
the near-conjugate symmetry of W.

Corollary 4.3

W (z)
z

= gexp 1 K(z;V)t(v)dv  (jargzj< ); (30)
0

where o =exp( <W (i)) = 0:6874961::.
Proof It immediately follows from (27) owing to the identity W (z)=z =e W®,
Now we take advantage of the fact that if T is a Stieltjes function then f and

1=f are Pick functions [4]. Therefore, W (X)=x and x=W (x) are Pick functions
that admit a representation (24).

Theorem 4.4 For the principal branch of the W function the following formulae,
with K(z;v) de ned by (28), hold.

Z
WZ(Z) = o+ 1 K(z;v)dv (jargzj< ) ; (31)
0

z

z E . 2vcotv P H .
W@ 0 . K(z;v)e dv (jargzj< ); (32)

where o = <[W(i)=i] = =W (i) = 0:5764127::;, o = <[i=W(i)] = 1:2195314:: .

The constants in (27) | (32) obey o +1i og=W(i), o=€e °= p=c0s g, and
0= ox( 5+ §).
We add in one more integral representation associated with the Nevanlinna for-
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represented as

Z 4
dh(r)
f(z) = + ,
@=zb+ T (33)
where constant b 0 and

2 Z Pr

h(r) = —lim< f(x+iy)dy: (34)
x¥0 0

In fact, the formula (33) follows from the Nevanlinna formula (or (24)) after chang-
ing the variable z ¥ iz
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Proof We consider the de ning equation (1) as an equation F (W) = 0 with respect
to W, where

F(
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have cos” =1 x=eand sin” =0. Now ~



September 1, 2011

20:21 Integral Transforms and Special Functions BersteinPick

11

z
L

21

FO

W (X) = In —2 d; (45)

where the integration contour is the unit circle j j=1and x 2 ( 1=e;e). Since
F()= xand W(x)=x=¢e W formula (44) is simpli ed

1l nEO), .

W) =575

Weset =¢'; .Then,as F( )= =F(e')e ' =R()+il(), where

R()=1 xe °5 cos( +sin );

I()= xe 5 sin( +sin );
andd = =1id , the integral (46) is reduced to
L z
W(x)=2— In R2()+1%() d : (47)
0

Similarly, the integral (45) can be represented in the form

V4
vv(x):zi ) 2arctan(1( )=R( ))sin  In R?()+1%() cos d ; (48)

where we have taken into account that arg(R( ) +il( )) = arctan(l( )=R( )) as
R()>0for0 < < and 1=e < x < e. We note that the integral (47)
has a simpler form than (48). Integrals similar to the above with using a function
F( )= e xinour notations instead of (40) in formulas (44) and (45) (without
simpli cation (46)) are given in [1].

Thus the integrals (47) and (48) representing the principal branch of the Lambert
W function are valid in the domain that contains interval ( 1=e;0).

However, there is one more branch that is also a real-valued function on this
interval, this is the branch 1 with the range ( 1; 1) (recall Wy > 1 and
Wo( 1=¢) = W 1( 1=e¢) = 1) [10]. To obtain a representation of this branch

we nd a zero of function () =1 xe = in( A; 1) for xed x using an
approach [2] (cf. formulae (12) and (8) therein)
z
_ 1 )

where the circle C is de ned by equation j +cj=c¢ 1 with arbitrary constant
c>land l=e<x< (2c 1)e 1 with arbitrary constant



September 1, 2011 20:21 Integral Transforms and Special Functions BersteinPick

12

where = ()=1+2(c 1sin’(=2)and = ()=(c 1)sin . As a result,
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some applications. One of them has been mentioned in connection with nding
Nuttall-Bouwkamp integral (12). Other de nite integrals appear when taking par-
ticular values of z. For example, integrals (4), (14), (15), (35) taken at z = e yield
new integrals for

vZ+ (1 vcotv)?
o l+vcscve (A+veoty) = °

v dv

v+ elvetvginy

Z
__¢® vZ+ (1 vecotv)? i
e 1 o vesc(v) (vesc(v) + elrveotvy =

=2 2+ (1+vtanv)(

=2
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