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The Lambert W function has a number of integral expressions, including integrals of Bern-
stein, Thorin, Poisson, Stieltjes, Pick and Burniston-Siewert types. We give explicit integral
expressions for W for each of these types. We also give integrals for a number of functions
containing W .

1. Introduction

The Lambert W function is a multivalued inverse of the mapping W 7!WeW . Its
branches, denoted by Wk (k 2 Z), are de�ned through the equations [10]

8z 2 C; Wk(z) exp(Wk(z)) = z ; (1)

Wk(z) � lnk z as <z !1 ; (2)
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Definition 2.1 A function f : (0;1) ! R is called a Stieltjes function if it
admits a representation

f(x) = a+

Z 1
0

d�(t)

x+ t
(x > 0) ; (3)

where a is a non-negative constant and � is a positive measure on [0;1) such thatR1
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where the unknown function �(t) can be determined using the Stieltjes-Perron
inversion formula [12, p. 591]

�(t) =
1

�
lim
s!0+

=
Z �t
�1

W 0(� + is) d�

for all continuity points on the t-axis. Since �(t) is de�ned up to an arbitrary
constant, one can set, after integrating,

�(t) =
1

�
lim
s!0+

=W (�t+ is) =
1

�
=W0(�t) ; (10)

where the limit uses the continuity from above of W on its branch cut. The same
result can be obtained using one of Sokhotskyi’s formulas [13, p. 138].

To verify that �(t) satis�es the conditions in De�nition 2.1, we use [15, lemma
1.1] to trim the domain of integration in (9) to 1=e < t <1. In addition, �(t) can
be regarded as a positive measure such that d�(t)=dt = o(1=t) at large t. ThereforeR1

1=e(1 + t)�1d�(t) <1 as required. Thus (9) takes the form

W 0(z) =
1

�

Z 1
1=e

1

z + t

d=W0(�t)
dt

dt : (11)

Changing to the variable v = =W0(�t) as before, we obtain (8). �

Remark 2 Formula (11) can also be found by considerations similar to those used
in [15] to prove (5). Moreover, (11) is a result of di�erentiating (5) with subsequent
integration by parts. The representation (11) is also found in [21].

Remark 3 Comparing formulae (5) and (11) shows that the latter can be formally
obtained from the former by replacing the ratios W (z)=z and �(t)=t respectively
with the derivatives dW (z)=dz and d�(t)=dt, where �(t) is de�ned by (10).

Corollary 2.4 Z �

0

�
sin v

v
ev cot v

�p
dv =

�pp

p!
; p 2 N : (12)

Proof The integral (9) can be written as

1X
n=1

(�1)n�1n
n

n!
zn�1 =

1

�

Z �

0

dv

z � t
; (13)

where t is the same as in (6) and the left side is the Taylor series for W 0 and is
convergent for jzj < 1=e. Since jtj > 1=e and therefore jzj < jtj, we can expand
(z � t)�1 in non-negative powers of z. Equating the coe�cients of like powers of z
we obtain the equality

(�1)n�1n
n

n!
= � 1

�

Z �

0

dv

tn
;

which after substituting for t results in (12). �

It is obvious that if the integral (12) is known, then going back from it to (13)
we �nd (8). The integral (12) was conjectured by Nuttall for real p � 0 [20];
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By [15, Lemma 1.2], the measure =W (�t) satis�es the requirements needed for
[23, Theorem 8.2]. Changing to the variable v = =W (�t) as before and taking a
holomorphic extension of the result to the cut z-plane Cn(�1; 0] satisfying near
conjugate symmetry, we obtain (22). �

Remark 1 In the terminology of [23, p. 75], the integral form (23) is the Thorin
representation of W function and �(t) = =W (�t)=� is the Thorin measure of W .

Remark 2 Di�erentiating the representation (22) for W (z) gives formula (8) for
W 0(z).

Remark 3 The representation (23) (up to changing t to �t) was obtained in [7] as
a dispersion relation for the principal branch of W function. The representations
(18)-(19) and (23) are also found in [21].

Note that by (19) function ’(�) is completely monotonic, as it should be by
De�nition 3.2.

4. Pick representations

Definition 4.1 [4, De�nition 4.1] A function f(z) is called a Pick function (or
Nevanlinna function) if it is holomorphic in the upper half-plane =z > 0 and
=f � 0 there.

A Pick function f(z) admits an integral representation [4, Theorem 4.4]

f(z) = �0 + b0z +

Z 1
�1

1 + tz

(t� z)(1 + t2)
d�(t) (=z > 0) ; (24)

where

�0 = <f(i); b0 = lim
y!1

f(iy)

iy
; (25)

and � is a positive measure which satis�es

lim
s!0+

1

�

Z
R
=f(t+ is)’(t)dt =

Z
R
’(t)d�(t) (26)

for all continuous functions ’ : R ! R with compact support. The formula (24)
with the integral written in terms of a measure d~�(t) = �(1 + t2)�1d�(t) is called
a Nevanlinna formula [17, p. 100].

Since W (z) is a holomorphic function in the upper half-plane =z > 0, where
=W (z
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where �0 = <W (i) = 0:3746990::,

K(z; v) =
(1 + zt(v))

�
v2 + (1� v cot v)2

�
(z � t(v)) (1 + t2(v))

; (28)

and t(v) is de�ned by (6).

Proof We apply formulae (25) and (26) to function f(z) = W (z) to obtain

�0 = <W (i) ; b0 = lim
y!1

W (iy)

iy
; d�(t) =

1

�
=W (t) dt :

Thus b0 = 0, and since =W (t) = 0 for t � �1=e, we obtain

W (z) = �0 +
1

�

Z �1=e

�1

1 + tz

(t� z)(1 + t2)
=W (t) dt (=z > 0) : (29)

By the change of variable v = =W (t) in the integral (29) (see (6)) we obtain
formula (27), which is also valid in the lower half-plane =z < 0 in accordance with
the near-conjugate symmetry of W . �

Corollary 4.3

W (z)

z
= 
0 exp

�
� 1

�

Z �

0
K(z; v)t(v)dv

�
(jarg zj < �) ; (30)

where 
0 = exp(�<W (i)) = 0:6874961::.

Proof It immediately follows from (27) owing to the identity W (z)=z = e�W (z). �

Now we take advantage of the fact that if f is a Stieltjes function then �f and
1=f are Pick functions [4]. Therefore, �W (x)=x and x=W (x) are Pick functions
that admit a representation (24).

Theorem 4.4 For the principal branch of the W function the following formulae,
with K(z; v) de�ned by (28), hold.

W (z)

z
= �0 +

1

�

Z �

0
K(z; v) dv (jarg zj < �) ; (31)

z

W (z)
= �0 �

1

�

Z �

0
K(z; v)e�2v cot v dv (jarg zj < �) ; (32)

where �0 = < [W (i)=i] = =W (i) = 0:5764127::, �0 = <[i=W (i)] = 1:2195314:: .

The constants in (27)|(32) obey �0 + i�0 = W (i), 
0 = e��0 = �0= cos�0, and
�0 = �0=(�

2
0 + �2

0).
We add in one more integral representation associated with the Nevanlinna for-



September 1, 2011 20:21 Integral Transforms and Special Functions BersteinPick

8

represented as

f(z) = z

�
b+

Z 1
0

dh(r)

z2 + r

�
; (33)

where constant b � 0 and

h(r) =
2

�
lim
x!0
<
Z pr

0
f(x+ iy)dy : (34)

In fact, the formula (33) follows from the Nevanlinna formula (or (24)) after chang-
ing the variable z ! �iz
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Proof We consider the de�ning equation (1) as an equation F (W ) = 0 with respect
to W , where

F (
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have � cos’ = 1�x=e and � sin’ = 0. Now ’
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W (x) = � 1

2�i

Z
�

ln

�
F (�)

�

�
d�; (45)

where the integration contour � is the unit circle j�j = 1 and x 2 (�1=e; e). Since
F (0) = �x and W (x)=x = e�W (x), formula (44) is simpli�ed

W (x) =
1

2�i

Z
�

ln (F (�)=�)

�
d� : (46)

We set � = ei�;�� � � � �. Then, as F (�)=� = F (ei�)e�i� = R(�) + iI(�), where

R(�) = 1� xe� cos � cos(� + sin �);

I(�) = xe� cos � sin(� + sin �);

and d�=� = id�, the integral (46) is reduced to

W (x) =
1

2�

Z �

0
ln
�
R2(�) + I2(�)

�
d� : (47)

Similarly, the integral (45) can be represented in the form

W (x) =
1

2�

Z �

0

�
2 arctan(I(�)=R(�)) sin � � ln

�
R2(�) + I2(�)

�
cos �

	
d� ; (48)

where we have taken into account that arg(R(�) + iI(�)) = arctan(I(�)=R(�)) as
R(�) > 0 for 0 < � < � and �1=e < x < e. We note that the integral (47)
has a simpler form than (48). Integrals similar to the above with using a function
~F (�) = �e� �x in our notations instead of (40) in formulas (44) and (45) (without
simpli�cation (46)) are given in [1].

Thus the integrals (47) and (48) representing the principal branch of the Lambert
W function are valid in the domain that contains interval (�1=e; 0).

However, there is one more branch that is also a real-valued function on this
interval, this is the branch �1 with the range (�1;�1) (recall W0 > �1 and
W0(�1=e) = W�1(�1=e) = �1) [10]. To obtain a representation of this branch
we �nd a zero of function �(�) = 1 � xe��=� in (�1;�1) for �xed x using an
approach [2] (cf. formulae (12) and (8) therein)

W�1(x) = �c� 1

2�i

Z
C

ln
�(�)

� + c
d� ;

where the circle C is de�ned by equation j� + cj = c � 1 with arbitrary constant
c > 1 and �1=e < x < �(2c� 1)e � 1 with arbitrary constant

�� 7.942 0 Td [(�)]TJ/F8 10.909s3n(
cos (48��)) as(

�
�)0.7401 Tf 5.697955 8.485 0 Td F8 10.9091of (40/4 0 Td [())-451(=)]� 7.9(1)]TJ
ET
q
1 0 0 1 2721822.749 0 Td [(�)]TJ/F8 10.9091 Tf 6.502 -3.959 Td [(c3(in)-419(()]TJ/ Tf 6.841 -8.13 [(�)]TJ/F8 10.9099)]T1 Tf 6.841 -8.864 Td [(cos)]TJ/F37 10.9031 Tf 16.4213 [(�)]TJ/F8 10.9f 591 Tf 4.244 Td [(�)]TJ/F37 10.here12�(48��)) sin��

�
�
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where � = �(�) = 1 + 2(c� 1) sin2(�=2) and � = �(�) = (c� 1) sin �. As a result,
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some applications. One of them has been mentioned in connection with �nding
Nuttall-Bouwkamp integral (12). Other de�nite integrals appear when taking par-
ticular values of z. For example, integrals (4), (14), (15), (35) taken at z = e yield
new integrals for �.

� =

Z �

0

v2 + (1� v cot v)2

1 + v csc ve�(1+v cot v)
dv ;

� =

Z �

��

v dv

v + e1+v cot v sin v
;

� =
e

e� 1

Z �

0

v2 + (1� v cot v)2

v csc(v) (v csc(v) + e1+v cot v)
dv ;

� =

Z �=2

��=2

�
v2 + (1 + v tan v) (
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