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Numerical Evaluation of Airy Functions
with Complex Arguments
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The Airy functions appear in the solution of several

We present two methods for the evaluation of Airy functions of com-  problems in fluid mechanics, geophysics, and atomic

plex argument. The first method is accurate to any desired precision but
is slow and unsuitable for fixed-precision languages. The second
method is accurate to double precision (12 digits) and is suitable for
programming in a fixed-precision language such as FORTRAN. The
first method uses the symbolic manipulation language Maple to
evaluate either the Taylor series expansion or an asymptotic expansion
of each function. The second method extends an idea of J. C. P. Miller
fﬂhn camnlax nlane It 1ses the first method to obtain a arid of pboints

physics. We now briefly discuss some of these. More details
can be found in the cited references.

For plane Couette fiow it can be shown (Drazin and Reid
[4]) that the Orr—-Sommerfeld equation for linear stability
has the form

_(ﬁrnzjﬂ\—mmhg?){/,:n (172)

in the complex plane where the functions are known to high precision
and then uses Taylor series from these base points. The resulting
algorithm is accurate and efficient.  © 1992 Academic Press, Inc.

1. INTRODUCTION

with boundary conditions
¢=D¢p=0 at n=—1—¢c,n=1—c

Here D stands for d/dy and e= (1aR)~'?. This can be
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of very high precision, limited only by the memory of the
machine used. Either of these two facilities enables us to use
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to find a bound on the truncation error.

To bound the truncation error we start with the
recurrence relation (3.1) and the definition of the Taylor
series sum for either S= f(x) or S= g(z):

o

S=Y %,=3 Y+ 3 Y. (3.4)
k=0

k=0 k=n+1

If we take n so Y, #0, then by the construction of the series
forforg, Y,,=Y,,,=0. Therefore,

S=< Z Yk>+Yn+3+Yn+6+Yn+9+
k

=0

|[4Bi(z)] _ (Bi(0) + |z| Bi'(0)) |F, 14l

|Bi(z)| \((1 —r. 1) |Bi(2)] )
— (Bi(0) + |z| Bi"(0)) | F, |

(3.6)

A Maple routine has been written to calculate Ai(z), 4i'(z),
Bi(z), and Bi’(z) by Taylor series and to return error
estimates based on the above formulae. Note that the idea
of numerical linear dependence plays a smaller role in the
very high precision context: one need only take enough
figures and the mathematical linear independence is evident.

3.2. Summation of Asymptotic Series for Large |z|

It is clear that the cost of computing Ai(z) to a given
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as and Bi'(z), we may investigate more efficient, fixed-preci-
sion algorithms. Here we develop a method, also based on

~ 1

L __________________________________________________________________________________________________________________________________________]
is the catastrophic cancellation along the real axis and, to a

where lesser extent, along the rays Arg(z)= +x/3, which also
o, T(n241) gives difficulty in the computation of Bi.
x(n)=n"Y RCESYD) We first briefly show the nature of the problem. Consider

” the Taylor series for y(z) based at z=c. Then
~(2)" + o)
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and an absolute tolerance must be used here instead.

Wl

—










114 CORLESS, JEFFREY, AND RASMUSSEN
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