

ering (to non-integral powers) and also the n-th root. These functions are built
in, to a greater or lesser extent, into many computer algebra systems (not to
mention other programming languages [12, 17]), and are heavily used. As ab-
stract algebraic solutions to integrals and/or differential equations, they satisfy
well-known properties [16]. However, reasoning with them as functions C — C
is more difficult than is usually acknowledged, and all algebra systems have one,
sometimes both, of the following defects:

e they make mistakes, be it the traditional schoolchild one

1=vV1=+/(-1)2=-1 (1)
or more subtle ones;

e they fail to perform obvious simplifications, leaving the user with an im-
possible mess when there “ought” to be a simpler answer. In fact, there
are two possibilities here: maybe there is a simpler equivalent that the
system has failed to find, but maybe there isn’t, and the simplification
that the user wants is not actually valid, or is only valid outside an excep-
tional set. In general, the user is informed neither what the simplification
might have been nor what the exceptional set is.

Faced with these problems, the user of the algebra system is not convinced that
the result is correct, or that the algebra system in use understands the func-
tions with which it is reasoning. An ideal algebra system would never generate
incorrect results, and would simplify the results as much as practicable, even
though perfect simplification is impossible, and not even totally well-defined: is
1+z+--+ 219 “simpler” than (%! —1)/(z — 1)?

Throughout this paper, z and its decorations indicate a complex variable,
while z, y and ¢ indicate real variables. The symbol & denotes the imaginary
part, and R the real part, of a complex number. For the purposes of this paper,
the precise definitions of the inverse elementary functions in terms of log are
those of [5]: these are reproduced in Appendix A for ease of reference.

2 The Problem

The fundamental problem is that log is multi-valued: since exp(2mi) = 1, its
inverse is only valid up to adding any multiple of 27i. This ambiguity is tra-
ditionally resolved by making a branch cut: usually [1, p. 67] the branch cut
(—00,0], and the rule (4.1.2) that

-7 < Slogz < . (2)

This then completely specifies the behaviour of log: on the branch cut it is
continuous with the positive imaginary side of the cut, i.e. counter-clockwise
continuous in the sense of [14].

z=Ine* +2mik(z) .

K(alnz) =0Vze Cifandonly if —1<a<1.
Inz; +Inzy = In(2z122) + 2miK(ln 21 + In 23) .
alnz =Inz% 4+ 27ik(alnz) .

Z0b — (za)beZWiblC(alnz) .

e = (e?)’ (—7 < Sa < 7).

Lotk

'~

Table 1: Some correct identities for logarithms and powers using .

2.2 Uniformly valid transformations

The authors of [6] point out that most “equalities” do not hold for the complex
logarithm, e.g. log(22) # 2logz (try z = —1), and its generalisation

log(2122) # log(21) + log(22). (7

The most fundamental of all non-equalities is pas log exp z, whose most obvious

violation is at z = 2mi. (A similar point v&aatt P X ﬁ'& P X d X tfao'g P X ﬁ'& 5

ot hoS

Similarly (4) can be rescued as
logZ = log z — 2miK(log). (10)

Note that, as part of the algebra of K, K(logz) = K(—logz) # K(log 1). K(2)
depends only on the imaginary part of z. K(logz) = 0 for all 2.

—1 7z real negative
-1 = . 11
K(=log2) { 0 elsewhere (1)

2.3 Multi-valued “functions”

Although not formally proposed in the same way in the computational commu-
nity, one possible

study elementary functions (they have been used successfully for algebraic func-
tions [10]). In order to answer this, a computational interpretation of a Riemann
surface must first be given, because the standard textbook descriptions do not
offer one.

The essence of the Riemann surface approach is geometric. We associate
paths with each quantity that we compute with. Consider the pair of functions
z =¢e% and w = Inz as an example. The approaches above have concentrated
on the values taken by w, or in other words on the behaviour of Inz in the
w-plane; in the Riemann-surface treatment, attention is shifted to the z-plane,
by considering the mapping z = e¥. Starting from a path, say a straight
vertical segment, joining two points w; and we = wy + 27i, we consider the
path it maps to in the z plane. Let z; = e¥! and 2y = e¥? = e¥1127i be the
endpoints of the path; usually these are considered to be the same point, but
in the Riemann approach, we continue to distinguish between them. In order
to create a distinction, we label the two z-points with the property that makes
them different, namely the value of the imaginary part of w. In [18, 7], a 3-
dimensional surface is constructed by plotting Sw against complex z. This can
be shown to be isomorphic to any faithful representation of the Riemann surface
for In z.

Therefore, in the Riemann approach, the complex number z now becomes a
number and an index: z,, and z,,. Using the index, we can decide which value
to assign lnz. Thus wy = In(zy,) and ws = In(2y,). This is effectively how
students in a first course on complex numbers compute the n values of z!/™.
They are taught to start with the equivalence z = re?? = re+27# and then
they are mysteriously ordered to apply the rule (ei?)1/™ = ¢#¢/™ to the second
form of z rather than the first. Thus they are replacing z with 2, an equivalent
point on the kth Riemann sheet, and then computing (zk)l/ n,

Taking the point of view of a computer algebra system, we see that a complex
number z does not reveal its full significance until we know what Riemann sheet
it is on. Thus, to compute logs correctly in the Riemann approach, a system
would have to create a new data structure, so that the correct sheet of the
Riemann surface could be recorded along with the value of z. This would have
to be equivalent to a path from some reference point. This does not complete
the solution to the problem, however, because the Riemann surface depends
upon the function being considered: the Riemann sheet for log being different
from that for arcsin z, for instance.

Further problems arise when we consider combining functions. Thus, when
we write In(u + v), are 4 and v on the same sheet? More importantly, what
sheet is the sum u + v on? Products are easier: we can write u = re?’ and
record its sheet as a multiple of 27 in 6, and likewise for v; then the index of the
sheet of the product uwv is just the sum of the indexes of the sheets of v and wv.
But sums are awkward. Moreover, if we write the expression (z — 1)'/2 4+ In z,
the Riemann surface for the combined function is different from either of the
component Riemann surfaces. How do we label 27

We have to distinguish between a conceptual scheme and a computational
scheme. Computer systems are about computation. Often computation assists

in conception, but computers must be able to compute. Riemann surfaces are
a beautiful conceptual scheme, but at the moment they are not computational
schemes.

3 The role of the Unwinding Number

We claim that the unwinding number provides a convenient formalism for rea-
soning about these problems. Inserting the unwinding number systematically
allows one to make “simplifying” transformations that are mathematically valid.
The unwinding number can be evaluated at any point, either symbolically or
via guaranteed arithmetic: since we know it is an integer, in practice little ac-
curacy is necessary. Conversely, removing unwinding numbers lets us genuinely
“simplify” a result. We describe insertion and removal as separate steps, but
in practice every unwinding number, once inserted by a “simplification” rule,
should be eliminated as soon as possible. We have thus defined a concrete goal
for mathematically valid simplification.?

The following section gives examples of reasoning with unwinding numbers.
Having motivated the use of unwinding numbers, the subsequent sections deal
with their insertion (to preserve correctness) and their elimination (to simplify
results).

4 Examples of Unwinding Numbers

This section gives certain examples of the use of unwinding numbers. We should
emphasise our view that an ideal computer algebra system should do this manip-
ulation for the user: certainly inserting the unwinding numbers where necessary,
and preferably also removing/simplifying them where it can.

4.1 Forms of arccos

The following example is taken from [5], showing that two alternative definitions
of arccos are in fact equal:

Theorem 1

%1n<\/1;z+i\/1;z)=—iln(z+i\/1—z2). (13)

First we prove the correct (and therefore containing unwinding numbers) version

of \/Z123=+/Z1+/72-
Lemma 1

[z123 = \/z\/z—z(_l)K(ln(zl)Jrln(@))‘ (14)

5Just to remove the terms with unwinding numbers, as is done implicitly in some software
systems, could be called “over-simplification.”

Proof.
JAm = exp (% (ln(zlzz)))

= exp (% (In(21) + In(22) — 2miK(In(z1) + In(22)))

— \/,Z\/z_2 exp (—7T1:]C(1n(2’1) + ln(z2)))
= z/z(—1)FnG)HnGa)

Lemma 2 Whatever the value of z,

V1—2vV142z=+1-22

This is a classic example of a result that is “obvious” — the naif just squares
both sides, but in fact that loses information, and the identity requires proof.
To show this, consider the apparently similar “result”:

Ve—1V1+z22V22 - 1.
If we take z = —2, the left-hand sidepxﬁf% prf ff D xf& Rxff f ff

This is trivially true at z = 0. If it is false at any point, say zg, then a path

from 2o to 0 must pass through a z where arg(HT" +i,/1%z)| = 7, ie.

1/ 1% + i\/12;z = it for t € R. Squaring because, first, arg is continuous

for |z| < m/2, and indeed for |z| < m, and, second, that the inputs to arg
are themselves discontinuous only on z > 1 and z < —1, and on these half-
lines, the arguments in question are 0 and 7/2, which are acceptable. Coming
back to the continuity along the path, we find that by squaring both sides,

z+ v

= In ([1 i/l - 1\/%—220

+2miK (ln(l + z\/T—z?) —In(1 - lﬁ))
= Infiz+ V1 - 22
+2miK(In(1 + i\/1z_—z2) —In(1- z‘\/lz_—ﬁ))

= 2jarcsin(z)

—2miK (2 In(iz + /1 — zZ))

z z
+27mi { In(1 41— —lnl—ii)
(1 +ioE) = m(1 - i)
The tendency for K factors to proliferate is clear. To simplify we proceed as
follows. Consider first the term

K2ln(iz + V1 — 22)) .

For |z| < 1, the real part of the input to the logarithm is positive and hence
K = 0. For |z| > 1, we solve for the critical case in which the input to K is —im
and find only z = rexp(ir), with » > 1. Therefore

K2In(iz+v1-22) =K(-In(1+2)) .
Repeating the procedure with

K(n(l+iz/vV1—22) —In(l —iz/V/1 — 22))

shows that K # 0 only for z > 1. Therefore

K(n(1 +iz/v/1—22)—In(1 —iz/V/1— 22)) —In(1 — 2))

and so finally we get

arctan = arcsin(z) — 7K(—1n(l + 2)) + 7K(—In(1 — 2)) , (16)

z
V1—2?
and this cannot be simplified further as an unconditional formula. Using equa-
tion (11), we can write

+7 ifz< -1
—mk(—In(14+2)) +7K(—In(l1—2)) =< -7 ifz>1
0 elsewhere on C.

5 Unwinding Number: Insertion Rules

Unwinding numbers are normally inserted by use of equation (9) and its con-
verse:

log (i—:) = log(z1) — log(z2) — 27K (log(z1) — log(22)) - (17)

10

Equation (10) may also be used, as may its close relative (also a special case of

(17))
u(t)-

7 More Automation

Here we look at a potential approach to mechanizing the reasoning required. We
reconsider theorem 1: in particular we look at the branch cuts of the left-hand
and right-hand sides, in the complex plane, which we will regard as the (z,y)
plane.

LHS The question is the branch cut of In (12i + i,/%). Hence we have

to solve
142 1—-=2
Cx ; = TT.
d(\/ 2 +z\/ 2) ™

In terms of (x,y)-coordinates, and cancelling the /2 in the denominators
for simplicity® this means that

Vitz+iy+iy/1—z—iy=2+0i: # € (—00,0).

Isolating the first square root?,

2
l1+z+4+9y = (iz—i\/l—x—iy)
= &% —2ii\/1—x—iy— (1 —2x—iy).

Hence
(2—3%)? =4 —43% + 3* = —43°(1 — 2 — iy).

Equating imaginary parts, 0 = 442y, so y = 0. Equating real parts,
~4
L =z, 50 7 € [V2,00).

Hence the branch cut for the logarithm term is (v/2 < z < 00,y = 0). We
alsoneedtoaddk@ xCR h ff fofftoﬂ' R

ff §ff pxths
p x fihan ff

Table 2: (20) at z =1+

ViE 4/ 1_;2 value
+ + 0
+ 0.73-1.13¢

0.73-1.13¢
0

—0.73 +1.13i
0

— 0

- - —0.73+1.134¢

142
2

|+ + +

I+ 1+ 1+ 1+
I+ + |
I

Equating imaginary parts, —22y = 0, so y = 0. Using this, the real parts
simplify to
—2zi + &2 = -1,
1+2°
2%

We need also need to consider the branch cuts of the square root, viz.
1 — (z +1iy)? = & + 0i with £ € (—00,0). The imaginary part of this is
2zy = 0, so either x = 0 or y = 0. Substituting this in gives two critical
lines: (y = 0,22 =1—2) and (z = 0,52 = & — 1). given the range of £,
the latter has no solution, while the latter is (y =0, |z| > 1).

ie. z= or x € (—oo,—1].

Lemma 3 The difference between the left and right hand sides is locally con-
stant, i.e. its derivat

and denominator by —1. U

More generally, we have reduced the analytic difficulties of simplifying these
functions to more algebraic ones, in areas where we hope that artificial intelli-
gence and theorem proving stand a better chance of contributing to the problem.

References

[1] Abramowitz,M. & Stegun,l., Handbook of Mathemat

[14] Kahan,W., Branch Cuts for Complex Elementary Functions. The State of
Art in Numerical Analysis (ed. A. Iserles & M.J.D. Powell), Clarendon
Press, Oxford, 1987, pp. 165-211.

[15] Litt,G., Unwinding numbers for the Logarithmic, Inverse Trigonometric
and Inverse Hyperbolic Functions. M.Sc. project, Department of Applied
Mathematics, University of Western Ontario, December 1999.

[16] Risch,R.H., Algebraic Properties of the Elementary Functions of Analysis.
Amer. J. Math. 101 (1979) pp. 743-759.

[17] Steele,G.L.,Jr., Common LISP: The Language, 2nd. edition. Digital Press,
1990.

[18] Trott,M., Visualization of Riemann Surfaces of Algebraic functions. Math-
ematica in Education and Research 6 (1997), no. 4, pp. 15-36,

A Definition of the Elementary Inverse Func-
tions

These definitions are taken from [5]. They agree with [1, ninth printing], but
are more precise on the branch cuts, and agree with Maple with the exception
of arccot, for the reasons explained in [5].

arcsinz = —iln (1—22+ zz) . (21)

T . 2 1+z . [1—2
arccos(z) = 5 arcsin(z) = : In (\/ 5 + z\/ 5) . (22)

1
arctan(z) = % (In(1 +42) —In(1 — i2)). (23)
arccot z = l In (z * l) = arctan (1) . (24)
2 z—1 z
arcsec(z) = arccos(l/z) = —iln(l/z +iy/1 —1/22), (25)
with arcsec(0) = 7.

arcesc(z) = arcsin(1/2) = —iln(i/z + /1 — 1/22), (26)

with arcesc(0) = 0.

arcsinh(z) = In (z +V1+ z2) . (27)

1 -1
arccosh(z) = 21n < s +4/2) . (28)

2 2

1
arctanh(z) = 3

arccoth(z) =

N | =

z+1 1-2
h(z) = 21 .
arcsech(z) n<\/ 2 +\/ 2)

1 1\”
arcesch(z) =In [= +4/1+ (= ;
z z

17

(In(1+2) —In(1 — 2)).

(In(=1-=2) —In(1 —2)).

(29)

(30)

(31)

