
Multivalued Elementary Functions

in Computer-Algebra Systems

David J. Jeffrey

Department of Applied Mathematics
University of Western Ontario

djeffrey@uwo.ca

Abstract. An implementation (in Maple) of the multivalued elementary
inverse functions is described. The new approach addresses the difference
between the single-valued inverse function defined by computer systems
and the multivalued function which represents the multiple solutions of
the defining equation. The implementation takes an idea from complex
analysis, namely the branch of an inverse function, and defines an index
for each branch. The branch index then becomes an additional argument
to the (new) function. A benefit of the new approach is that it helps
with the general problem of correctly simplifying expressions containing
multivalued functions.

1 Introduction

The manner in which computer-algebra systems handle multivalued functions,
specifically the elementary inverse functions, has been the subject of extensive
discussions over many years. See, for example, [5,6,8]. The discussion has centred
on the best way to handle possible simplifications, such as

√
z2 = z ? arcsin(sin z) = z ? ln(ez) = z ? (1)

In the 1980s, errors resulting from the incorrect application of these transforma-
tions were common. Since then, systems have improved and now they usually
avoid simplification errors, although the price paid is often that no simplification
is made when it could be. For example, Maple 18 fails to simplify

√
1− z

√
1 + z −

√
1− z2 ,

even though it is zero for all z ∈ C, see [2,8]. Here a new way of looking at such
problemsis presented.

The discussion of possible treatments has been made difficult by the many
different interpretations placed on the same symbols by different groups of math-
ematicians. Sorting through these interpretations, and assessing which ones are
practical for computer algebra systems, has been an extended process. In this
paper, we shall not revisit in any detail the many past contributions to the
discussion, but summarize them and jump to the point of view taken here.

G.A. Aranda-Corral et al. (Eds.): AISC 2014, LNAI 8884, pp. 157–167, 2014.
c© Springer International Publishing Switzerland 2014

158 D.J. Jeffrey

1.1 A Question of Values

One question which has been discussed at length concerns the number of val-

Multivalued Elementary Functions in Computer-Algebra Systems 159

2 A New Treatment of Inverse Functions

The basis of the new implementation is notation introduced in [11]. To the
standard function ln z, a subscript is added:

lnk z = ln z + 2πik .

Here the function ln z denotes the principal value of logarithm, which is the
single-valued function with imaginary part −π < � ln z ≤ π. This is the function
currently implemented in Maple, Mathematica, Matlab and other systems. In
contrast, lnk z denotes the kth branch of logarithm. With this notation, the
statement above of Carathéodory can be restated unambiguously as

∃k, m, n ∈ Z, such that lnk z1z2 = lnm z1 + lnn z2 .

His “and conversely” statement is actually a stronger statement. He states

∀k ∈ Z, ∃m, n ∈ Z, such that lnk z1z2 = lnm z1 + lnn z2 .

In the light of his converse statement, Carathéodory’s first statement could be
interpreted as meaning

∀m, n ∈ Z, ∃k ∈ Z, such that lnm z1 + lnn z2 = lnk z1z2 .

I think the English statement does not support this interpretation, but it may be
supported by the original German. In any event, it shows the greater conciseness
of branch notation.

The principal of denoting explicitly the branch of a multivalued function will
be extended here to all the elementary multivalued functions. In order for the
new treatment to be smoothly implemented in Maple, a system of notation is
needed that can co-exist with the built-in functions of Maple.

2.1 Notation for Inverses

The built-in functions for which we shall be implementing branched replacements
are

– log(z),
– arcsin(z), arccos(z), arctan(z),
– arcsinh(z), arccosh(z), arctanh(z),
– fractional powers z1/n.

Rather than risk confusion by trying to modify the actions of these names within
Maple, we shall leave the built-in functions untouched and work with indepen-

160 D.J. Jeffrey

2.2 Subscripts in Maple

A subscript on a function f , as in fk(z), is really an additional argument to the
function, except that instead of placing it in parentheses, as in f(k, z), we choose
subscripting. In Maple, however, the programming is quite different in the two
cases. Thus f(k, z

Multivalued Elementary Functions in Computer-Algebra Systems 161

elif type(procname, ’indexed’) then

branch := op(procname);

branch*Pi+(-1)^branch*arcsin(z);

else arcsin(z);

end if;

end proc;

The nargs function counts the number of arguments supplied by the user, and
although here the code is restricted to 1 argument, one could allow the branch
number to be passed as an argument instead of as a subscript. Note that the
code is not ‘industrial strength’, and in particular the branch is not tested for
being an integer. Since the code is exploratory, it relies on the user being sensible.
Examples of its use appear below.

3.2 Inverse Cosine

The principal branch has real part between 0 and π, and this is easiest achieved
by setting invcosk z = invsink+1 z − π/2. The code is

invcos := proc (z::algebraic) local branch;

if nargs <> 1 then

error "Expecting 1 argument, got", nargs ;

elif type(procname, ’indexed’) then

branch := op(procname);

invsin[branch+1](z)-Pi/2;

else arccos(z);

end if;

end proc;

3.3 Inverse Tangent

The principal branch has real part from −π/2 to π/2, and the kth branch is
invtank z = invtan z + kπ. As code:

invtan := proc (z::algebraic) local branch;

if nargs <> 1 then

error "Expecting 1 argument, got", nargs ;

elif type(procname, ’indexed’) then

branch := op(procname);

branch*Pi+arctan(z);

else arctan(z);

end if;

end proc;

The two-argument inverse tangent function has been implemented in many com-
puter languages. It is a synonym for arg, in that arg(x + iy) = arctan(y, x) for
x, y ∈ R. It can be described using the branches of invtan as

arctan(y, x) = invtank(y/x) ,

Multivalued Elementary Functions in Computer-Algebra Systems 163

4 Applications

We now demonstrate some uses of the new notation.

4.1 Plotting

With the new functions, we can easily plot branches. Figure 1 shows plots pro-
duced by the Maple commands

> plot([invsin[-1](x),invsin(x),invsin[1](x)],x=-1 .. 1,

linestyle=[2,1,3]);

> plot([invtan[-1](x),invtan(x),invtan[1](x),invtan[2](x)],

x=-5..5, discont = true, linestyle = [2, 1, 3, 4]);

164 D.J. Jeffrey

Consider an identity one might see in a traditional treatment:

cosx =
√
1− sin

Multivalued Elementary Functions in Computer-Algebra Systems 165

166 D.J. Jeffrey

The contrast is illustrated in figure 4 by the plot

> plot([2*invtan[unwindK(I*x)](3*tan((1/2)*x)),

2*arctan(3*tan((1/2)*x))], x=-3..9,linestyle=[2,1],

discont=true);

Multivalued Elementary Functions in Computer-Algebra Systems 167

There are many multivalued functions in mathematics, and here we have
considered only the elementary functions. The principles developed here can be
found already in Maple to varying degrees. The Lambert W function has been
fully implemented using the same ideas of explicit branches as here. Maple’s
RootOf construction uses an index to specify different roots of an equation.
Although there is a tendency to think of RootOf as specifying values rather
than functions, there is no reason not to use it to define a function, although its
generality will often make the branch structure of the defined function difficult
to understand. The current approach is one of a number of possibilities for
correct manipulation in a computer-algebra system. It fits together with the
unwinding number approach happily and offers other ways of presenting and
working with expressions. As with the unwinding number, there remains much
scope for further development.

References

1. Abramowitz, M., Stegun, I.J.: Handbook of Mathematical Functions. Dover (1965)
2. Bradford, R.J., Corless, R.M., Davenport, J.H., Jeffrey, D.J., Watt, S.M.: Reason-

	Multivalued Elementary Functions in Computer-Algebra Systems
	1Introduction
	1.1A Question of Values

	2A New Treatment of Inverse Functions
	2.1Notation for Inverses
	2.2Subscripts in Maple

	3Particular Functions
	3.1Inverse Sine
	3.2Inverse Cosine
	3.3Inverse Tangent
	3.4The Logarithm
	3.5Inverse Hyperbolic Functions
	3.6Fractional Powers

	4Applications
	4.1Plotting
	4.2Identities
	4.3Calculus

	5Conclusions
	References

