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Oftprint from Sedimentation of Small Particles in a Viscous Fluid, edited
by E.M. Tory and published by Computational Mechanics Publications in
1996. Page numbering follows the original article. This is the submitted
text, and the published text appears to differ only in the omission of
punctuation from the equations.

Chapter 4

Some basic principles in interaction
calcmlations

D.J. Jeffrey

Department of Applied Mathematics, The University of
Western Ontario, London, Ontario, Canada N6A 5B7

Abstract

Some general aspects of the interactions taking place within a suspension can be
understood by exploiting properties of the Stokes equations; these properties and their
applications are described. Specifically, the way in which reversibility can be used to
predict overall properties of a flow is explained by analysing several applications both
informally and formally; Faxén’s laws for the response of a particle to an ambient
flow are examined to clarify common conceptual difficulties; and the use of lubrication
theory to approximate interactions between close particles is developed carefully. In
addition, the ways in which tensors can be used to summarize interaction results are
covered, and the principles are illustrated whereby tensor relations can be simplified
by appealing to geometrical symmetries and the character of tensor transformations.

Nomenclature

a Radius of spherical or circular particle
A B Resistance tensors

E Rate-of-strain tensor

f Equivalent surface forces

F. F; Force on particle

Acceleration due to gravity
Green’s function for Stokes flow
Resistance tensor
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about the interactions between suspended particles at low Reynolds num-
bers than it is at higher Reynolds numbers
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obtained its position and velocity; the same flow will be found whether
the sphere is moving at constant velocity V' or whether it is undergoing
an oscillatory motion and has the velocity V only at that instant. Conse-
quently, if time is reversed, there is no change in the governing equations,
and the system retraces its steps, moving in a valid Stokes flow.

Some visually compelling demonstrations of reversibility can be seen
in the film Low-Reynolds-number flows that was made by G.I. Taylor in
1967*. One demonstration, for instance, uses very viscous oil in the an-
nulus between two concentric vertical cylinders, the inner cylinder being
able to rotate about its vertical axis. Some dye is injected into the oil
and then the cylinder is rotated, causing the dye to smear out, or so it
seems. When the motion is reversed, however, all the dye returns to its
starting position (except for a little blurring due to molecular diffusion).
A similar demonstration, using the same apparatus, places a rigid body
in the oil, and again the inner cylinder is rotated. The body translates
and rotates away from its initial configuration, but when the wall motion
is reversed, the body returns to its starting point. Another demonstra-
tion shows a small mechanical fish vainly trying to swim by flapping a
tail. At high Reynolds number, it moves forward, but at low Reynolds
number, each time the tail reverses its motion, so does the fish.

The above demonstrations require reversibility alone; the next one
combines reversibility wwith another symmetry possessed by the flow.
Consider a sphere falling parallel to a vertical plane wall. The fact that
the sphere falls at a constant distance from the wall is demonstrated in
the following way. First one imagines that the sphere falls for a short time
downwards. For the sake of setting up a contradiction, it is necessary
to conjecture that it is not the case that the sphere stays at a constant
distance from the wall, and that instead it moves away from the wall.
Now consider what would happen if time were to run backwards. Clearly
the sphere would retrace its path and move closer to the wall as it rose.
Now observe that a second way to get the sphere to move upwards is to
reverse gravity while leaving time running forward. Because the wall is a
plane, the flow situation after gravity has been reversed is identical to the
situation before (notice that this geometrical symmetry is independent of
the reversibility just described). Accordingly, if the sphere is subjected
to an upward force, then, by the starting conjecture, it will move away
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Figure 1. A sphere falling, or rising, next to a plane wall.

from the wall as it rises, as shown in figure 1.

This is a contradiction: on the one hand, geometrical symmetry says
that an upward-moving sphere will move away from the wall, while re-
versibility says that the sphere will move towards the wall. The conclu-
sion is that it will neither move closer nor away, but stay at the same
distance.

Reversibility is also important for periodic motion. Numerous peri-
odic motions have been found in systems of particles moving in Stokes
flow, and their existence can have a strong influence on calculations. If
the system is scleronomic, meaning the external forces on the flow do not
change with time, then a moving system of particles that passes through
a configuration twice must be executing a periodic motion, and reversibil-
ity combined with another symmetry can prove this, as the tumbling of
an ellipsoidal particle in a shear flow illustrates. The ellipsoid executes a
closed periodic orbit, and this orbit is described by an orbital constant,
whose value depends upon how the particle starts its motion. One might
suppose that the ellipsoid would follow an orbit that is not exactly peri-
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Figure 2. A simplified version of Taylor’s demonstration.

with respect to its centroid at .. The boundary condition on its surface
is then
u=V+02x(x—x), (2)

and in addition V' and §2 are chosen so that the total force [o -n dS
on the particle is zero, as is the total moment [o -n x (z — z.) dS.
Here o is the stress tensor. It will now be proved that, for the purpose
of calculating the displacements of fluid particles, it does not matter how
the point X gets from z = a to x = b; in other words, for all possible
functions X (¢), the fluid elements and the suspended particle wi ¥a Thgichbn Wik, e TMidnTaEn 1
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condition is also satisfied, because, using subscript notation,

ou;  Ou;
GUZ—Mﬁ+u{ﬁﬁ+Jﬁ}

xj T
— V() (—p iy + [ iy —’]) — V()07

$]’ Z;

Since a;‘j integrates to zero force, so does o;;. The other boundary con-
ditions are satisfied in a similar manner.

The displacement of a fluid element is calculated by considering what
happens during a time 6t. If a fluid element is at x () (the subscript is
a reminder that xj is a Lagrangian quantity), then its motion is given
by

— =u(xL(t),?), (3)

where wu is the Eulerian velocity that obeys the Stokes equations. There-
fore, in time 6t, the displacement of the fluid element is given approxi-
mately by dtu(xr,t) = 6tV (t)u}, using the results established above.
Now §t V(t) = dz, the displacement of the boundary. Thus all fluid dis-
placements during the motion are proportional to the corresponding dis-
placement of the boundary, implying that the total displacement of any
particular el
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part of the solution), together with t-o -n = 0 where ¢ is a unit tangent
vector to the surface. The equations and boundary conditions are again
linear and scale with the boundary velocity.
The strong form of reversibility applies to systems in which the Stokes
equations contain a single time scale, imposed by the boundaries through
the boundary conditions. Such cases will agle tt mefic nd  Boound Ti ¢ r Hersi Ti nib T @ T3
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containing very small particles will be subject to physical processes that
modify the governing equations and destroy reversibility, such as electric
charge effects, Brownian motion, and so on.

3 Faxén laws

Faxén laws are exact mathematical statements about the response of
a particle to an ambient flow. They are used, however, mostly in the
approximate calculation of interactions between particles, and this am-
bivalence can be a cause of confusion. Suppose that a region of fluid
contains an ambient flow field u® (), and suppose that a rigid spherical
particle is introduced into this field at a point @ = xy. The force F
and couple L experienced by the sphere, which is stationary, are given
exactly by

F = 6map [u™(zo) + %a2V2u°°(:c0)] , (5)

and
L = 8ma’uV x u™(zg) . (6)

Laws for other quantities are also known. It is certainly striking, on
first acquaintance, to see that only the local velocity and its first and
second derivatives are important, no matter how complicated the ambient
flow may be. As Kim & Karrila (1991) point out, the interpretation
can be simplified further by noting that V2u® is proportional to the
ambient pressure gradient. It is natural to contrast this simplicity with
the lengthy calculations in the literature of the motion of a particle near
a wall or a second particle, and to wonder how it can be exact. Students
sometimes draw a diagram of a sphere in a maelstrom of streamlines, and
ask whether Faxén laws applies to this situation.

An understanding of whether Faxén laws are exact or approximate
can be obtained by reviewing a proof of them, here the proof that was

given in the appendix to Batchelor (1972). Any solf#fion of fihe ° TR TEmy - Bk LB LA HF:’!



107

Then G(z—¢&)-(n-o dS) is the velocity field produced at & by that force.
The second term mn - &2 - u dS corresponds to a ‘double layer’, and has
a similar interpretation. The solution (7) can be interpreted by saying
that the flow outside a rigid particle cannot tell the difference between
a physical boundary and an appropriate distribution of point forces and
double layers. Faxén’s theorem is derived by adding such a distribution
of forces to a region of fluid sa



108

Some of the usual questions about Faxén laws can now be answered.
The first question asks ‘Is it really exact?’. The answer is ‘Yes’, provided
the limit R — oo is accepted. This limit is often taken in fluid mechanics,
and although it can cause difficulties, for example uniform flow around
a cylinder in two dimensions, it is usually accepted if ©*° is simple. The
second question asks ‘Does it apply to flows with large curvature?’. Large
curvature means that the values of V4 and higher derivatives are large,
in order for the streamlines of u®° to be highly curved. Here the answer
is ‘Technically yes, but in practice no’. It is technically yes, because it is
possible mathematically to imagine a flow with large curvature produced
by very distant boundaries. It is no in practice, because the person
asking the question is almost certainly thinking of a situation in which
the curvature is caused by boundaries fairly close to the particle. For
example, the particle is in a curving pipe or near other particles. Thus
the flow is probably not caused by large forces far away, but by ordinary
forces that are close. In this case the questioner is really refusing to ignore
the reflections from the boundary, in other words, refusing to accept the
premise of the theorem.

4 Lubrication theory and close particles

The interactions between two nearly touching particles can often be cal-
culated using Ilubrication theong. This ‘theory’ is actually a set of ap-
proximations that allow the Navier-Stokes equations to be simplified to
a form in which they are more easily solved. In order for the approxima-
tions to be valid, the particles must be nearly touching, and in addition
their relative motion must cause the fluid in the gap between them to
be highly sheared. For example, if two close particles are in the pro-
cess of moving past each other, then lubrication theory can be applied,
but if they are sedimenting side-by-side with no relative motion between
them, it cannot. Although the name lubrication theory is a reminder
that the approximations were first worked out in the analysis of flows
in lubricated bearings, the theory in the low-Reynolds-number context
is not identical to its engineering namesake; some of the ways in which
the approximations are developed in Stokes flow give the application a
distinctive slant.

The aspects of the theory that will be explored are the definition of
the gap between the particles, the handling of the edge of the gap, and the
role of the fluid far from the gap. It is important to discuss these points
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Figure 3. A plate approaching a wall.

because the justification for the theory is usually informal; it is devel-
oped initially for a situation in which the approximations have a strong
intuitive appeal, or for a situation in which they can be proved correct.
Subsequently, the approximations are applied to situations in which the
justification is less straightforward, and there is a danger that future cal-
culations will continue to use them swhen they have really ceased to applyc
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non-dimensionalized velocity components be given by v = V(u,v). If
the pressure is given by puV'p, the equations are

Pu  *u  Ip
[ _— 1
O0x? * oy2  Ox’ (10)
v v Op
R 11
O0x? + oy2 oy’ (11)
ou Ov
42 =0. 12
ox * oy 0 (12)

The no-slip boundary conditions require that
u(z,0) =u(z,h) =0 and wv(z,00=0 and w(z,h)=-1.

Since, from the boundary conditions, v goes from —1 to 0 in a distance
h, the term Ov/dy will be approximately —1/h, and then, from the conti-
nuity equation (12), this implies that du/0z = 1/h. This in turn implies
u ~ z/h, which is consistent with our global estimate above. Since u
grows with x while v does not, it must be that v > v for x > h, i.e.
away from the centre of the gap. So the terms in (11) are much less
than those in (10), and (11) can be neglected. Further, dp/dy can be
set to zero in comparison with dp/0z, meaning that p is approximately
independent of y. The assumption that pressure is approximately con-
stant across a thin layer of fluid is also used in boundary-layer theory.
In equation (10), the derivative 9>u/9y? must be of the order of Vx/h3,
since u changes from 0 at the walls to Vz/h in the flow. The estimate
u ~ Vx/h also implies 8%u /022 ~ 0, so clearly 0%u/0y® > 0?u/0z?, and
therefore (10) can be approximated by

2%u _dp

the total derivative of p showing that it depends only on z. Inte
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Therefore p = —622 /h3 + Az + B. The calculation is completed by
applying boundary conditions on p. By the symmetry of the problem,
A =0, but what about B, the pressure at the centre of the gap?

As the plate approaches the plane, the fluid from the gap region
will escape into the surrounding fluid, spreading out until it reaches the
ambient pressure. Depending upon the Reynolds number of the flow
outside the gap, this could even be a jet-like flow. The problem of how
the fluid slows down on leaving the gap is a difficult calculation and it
is better avoided if possible. Consequently, it is assumed that as soon
as the fluid reaches x = +L, the pressure equals the pressure outside
the gap (which is zero). This gives p = 6(L? — 2?)/h3, and a non-
dimensionalized force of 2 fOLp dz = 8L3/h3. The last assumption is
in fact the specification of the edge of the gap (which was left vague
above) and the reader’s acceptance of it depends to some extend on
mathematical outlook. The clear-cut geometry suggests strongly that
the pressure will reach the ambient one within a distance O(h) from the
edge, that is, within the circle labelled ‘edge of gap’ on figure 3. This will
induce an error O(h/L), which is of the same order as the approximations
made in obtaining (13). It is possible to contrive flow conditions outside
the gap that would invalidate the assumptions about the edge of the
gap, but it is not a serious worry and the approximations above are well
established.

The above example is important in engineering lubrication theory,
but for sedimentation studies and other particulate interaction problems,
the geometry is only generally relevant. Keeping with the simplification
of two-dimensions, consider a cylinder approaching a plane, again with
velocity V, as shown in figure 4. From looking at the figure, one can
be convinced that there is a gap region between the cylinder and plane,
although it is no longer possible to point to the edge of the gap with the
confidence felt in the first example. One proceeds to analyse the flow in
the gap, in the hope that everything will turn out all right in the end.

Let the radius of the cylinder be a and let the gap be h at its min-
imum. The velocities and pressure are again V(u,v) and pVp and the
approximations leading to (12) and (13) still apply. The boundary con-
ditions can be simplified by expanding the expression for the cylinder
surface for small values of x. Thus

y=a+h—Va®—12= h+—+0() H+0(z%), (15)
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in some presentations, this limit is taken early in the treatment, so that
the edge of the gap never appears.

The lubrication result (19) can be compared with the exact result
obtained by Jeffrey & Onishi (1981). When their solution is expanded
for small h, it becomes

reavie ()7 52 (1 o ((2))

Both (19) and (20) contain the same leading term, but (20) contains a
second singular term. Numerically, both terms are important: if A = 0.1,
then the force according to the exact solution is 148.31, whereas one term
of (15) gives 134.2 and two terms give 148.25. So the comparison provides
reassurance on one point, but raises another. In particle geometries, the
edge of the gap can be avoided to leading order, but lubrication theory
must be extended to higher order to capture all of the important terms.
Can the edge of the gap be ignored at higher order? This question has
been investigated in three-dimensional flows.
The change from two dimensions to three dimensions W% nTi &n Wnlin the ree Thk'i7 Tis
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The edge of the gap appears in the expression for the force in a way
that cannot be removed by taking the limit Rg — oo, and this is the
feature that this exampl
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On of the attractions of lubrication theory is the fact that it can
yield important information about interactions from a relatively simple
analysis of only one part of the flow. If the edge of the gap cannot
be removed from the calculations, lubrication theory loses some of its
appeal. Thus the importance of the O’Neill & Stewartson result lies in
the fact that it provides a foundation for other lubrication calculations
to draw on. Even if the edge of the gap remains in the result of a gap
calculation, it can be removed by postulating that a full analysis would
find a cancelling term in the solution outside.

In a number of publications, lubrication theory has been pushed even
further. Thus the approximations above have been cab
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found good agreement with experiment. The motion of one sphere ap-
proaching a much larger one has been followed very accurately by Lecoq
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The need for axial vectors is demonstrated by considering a rotating
rigid body in a very simple case: a rigid body rotating around the z axis
with vector angular velocity w = (2k. Consider velocities in the XY
plane. The velocity (vg,vy) at any point (z,y) is given by v = w x 7,
meaning its components are given by

vy = —0y vy = N . (31, 32)

First consider the transformation to a dashed coordinate system defined
by ' =y, ¥’ = —x and 2’/ = z, which is a rotation about the z axis. The
matrix agjl.) for this transformation is

0
V=1 -1

0

(33)

OO =
_ o o

The matrix o) can be used to transform both w, which remains 2k,
and v whose components in the new coordinates become v, = v, and
v; = —uvz. Now consider the transformation to another new, doubly
dashed, coordinate system defined by z” = z, v = y and 2" = —z. Tg?

reader will notice that the new system is left handed. The matrix a, J
for this transformation is

0
0. (34)
~1

4@

[eviN el
o = O

Clearly, this transformation causes the z component of any vector to
change sign, since anything pointing along the old positive z axis must
now point along the negative 2" axis. Suppose that this applies to the
quantity w. The transformation w, = —w, = —£ would lead to a
difficulty, because the velocity components for v would become

[

1
y =Wt = -z .

vh=—wly =y and v

Thus the x and y velocities are now the negative of what they were before,
although those axes were unchanged. The only way to correct this is
to introduce a negative sign somewhere in the chain of definitions, and
the standard place is the transformation law for w. Thus the equation
v = w X r is kept intact (as is the definition of cross product in terms
of components) as is the fact that v and » transform according to the
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vector law. Now, however, w transforms according to a pseudovector law,
1 2 .. .

namely w, = az(-j)wj, but wf = —az(-j)wj. This is the difference between

ordinary, or polar, vectors such as velocity, force and position, and axial

vectors such as angular velocity, and angular momentum.
The difference between vector types






121

every point is doubled also. More can be seen, however, if the equation
is rewritten using the results of the previous section.

3 1 zx (3 3
The new feature of this equation is the fact that the brackets do not
contain U; the effects of the velocity of the sphere and the geometry of
the sphere have been separated in the presentation of the equation.

To put it another way, in one dimension a scalar quantity « depends
linearly on a scalar quantity § when o = k3, and moreover the coefficient
of proportionality k is also scalar. In (39) there is a similar linear rela-
tionship u = K- U, only now the linking coefficient has become a tensor,
because u and U are not in the same direction (as a scalar coefficient
would imply).

A second example is provided by the drag on a non-spherical particle.
The force F is linearly related to the velocity of the particle U, but not
necessarily in the same direction, as is shown by writing F' = A-U. The
tensor A is called a resistance tensor and it contains only geometrical
factors and information about the particle shape, but nothing about the
velocity. This is some help, but A still contains 6 scalar components (not
9, because the reciprocal theorem shows it is symmetric), and could be
a difficult object to work with. If, however, the particle is axisymmetric,
A can be simplified further. Suppose the axis of symmetry is d (a unit
vector), then

A = Kidd + Ksl (40)

where K71 and K> are scalars based on the shape. The proof first extracts
the component of velocity parallel to d. From above, this is U - dd. By
symmetry, the force is parallel to this component, so F =
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linear in these quantities (cf. equation (2) above), the force is a 1
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most general form for G;j is then
Gijk = K4didjdk + K5di5jk + K6dj5ik + K7dk5ij . (43)

Since Ejy, is traceless, the term K5d;d;;, cannot contribute to F; and may
therefore be dropped. Similarly, because Ej; is symmetric, the terms
Kegdjd;, and Kr7dgd;; will always contribute to F; in the form Kg + K7,
so one term could be dropped. However, for reasons of asthetics, they
are more commonly set equal. Thus G is reduced to depending on
two independent scalar functions. As in the case of A, there is some
arbitrariness in assigning the two functions, cf. equations (40) and (41),
and different authors might vary in their choices.

References

Aris,



124

Keller, J.B. (1963) Conductivity of a medium containing a dense array of perfectly
conducting spheres or cylinders or non-conducting cylinders, J. Appl. Phys. 34,
991-993.

Kim, S. & Karrila, S.J. (1991) Microhydrodynamics, Butterworth.

Kocabiyik, S. & Jeffrey, D.J. (1994) Asymptotic analysis of interactions between
highly conducting cylinders, Appl. Math. Lett. 7, 59-63.

Leal, L.G. (1980) Particle motions in a viscous fluid, Ann. Rev. Fluid Mech. 12,
435-476.

Lecoq, N., Feuillebois, F., Anthore, R., Petipas, C., & Bostel, F. (1995) J. Phys. II
France, 5, 323-334.

Lorentz, H.A. (1896) A general theorem concerning the motion of a viscous fluid and
a few consequences derived from it, In: Collected Papers, Volume IV, pp7-14.
Martinus Nijhoff, 1937.

Morse, P.M. & Feshbach, H. (1953) Methods of Mathematical Physics, McGraw-Hill.

O’Neill, M.E. & Stewartson, K. (1967) On the slow motion of a sphere parallel to a
nearby plane wall, J. Fluid Mech. 27, 705.

Taylor, G.I. (1967) Low-Reynolds-Number Flows, 16mm colour sound film, produced
by Educational Services Inc.

Trahan, J.F. & Hussey, R.G. (1985) The Stokes drag on a horizontal cylinder falling
toward a horizontal plane, Phys. Fluids, 28, 2961-2967.

Tory, E.M. & Kamel, M.T. (1992) Note on the periodic motion of four spheres, Powder
Technol. 73, 95 — 96.

Tory, E.M., Kamel, M.T. & Tory, C.B. (1991) Sedimentation of clusters of identical
spheres. III. Periodic motion of four spheres, Powder Technol. 67, 71.



