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Abstract. We consider a monic polynomial of even degree with sym-
bolic coefficients. We give a method for obtaining an expression in the
coefficients (regarded as parameters) that is a lower bound on the
the method given here could be used to find the exact minimum, but only
for low degree polynomials is this feasible; we illustrate this for a quartic
polynomial. As an application, we compute rectifying transformations
for integrals of trigonometric functions. The transformations require the
construction of polynomials that are positive definite.

1 Introduction

Let n ∈ Z be even, and let Pn ∈ R[a0, . . . , an−1][x] be monic in x, that is,

Pn(x) = xn +
n−1∑

j=0

ajxj . (1)

A function L(aj) of the coefficients is required that is a lower bound for Pn(x),
i.e., L must satisfy

(∀x)Pn(x) ≥ L(aj) . (2)

The problem definition does not require that the equality in (2) be realized. If
that is also the case, then L
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The problem described has connections to several areas of research, includ-
ing parametric optimization, quantifier elimination and polynomial positive-
definiteness. Much of the work on parametric optimization concerns topics such
as the continuity of the optimum as a function of the parameters, or the perfor-
mance of numerical methods; see, for example, [1, 2, 4]. The following problem
was considered in [1].

min{λ2x2 − 2λ(1 − λ)x | x ≥ 0} .

The unique solution for the unconstrained problem is found for λ �= 0 to be
−(1−λ)2, which is realised when x
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>minimize( x^4 - 5*x^2 + 4*x ,x);
RootOf(2 _Z^3 - 5 _Z - 2,index=3 )^4

- 5*RootOf(2 _Z^3 - 5 _Z - 2,index=3 )^2
+ 4 RootOf(2 _Z^3 - 5 _Z - 2,index=3 )

which can be simplified by Maple to

-(5/2) RootOf(2 _Z^3-5 _Z-2,index=3)^2
- 3 RootOf(2 _Z^3-5 _Z-2,index=3)

The second argument of RootOf selects, using an index, the appropriate root of
the polynomial.

2 Algorithm for Lower Bound

We now describe a recursive algorithm. In principle, it could be used to find
the minimum of a parametric polynomial, and indeed we show this below for a
quartic polynomial, but the main intended use is for a simpler lower bound.

Consider a polynomial given by (1). We shall express the lower bound to Pn

in terms of that for Pn−2. This recursive descent terminates at P2, for which we
have the result (7). The descent is based on the following obvious lemma.

Lemma 1. If f(x) and g(x) are two even-degree monic polynomials, then

inf(f(x) + g(x)) ≥ inf f(x) + inf g(x).

Proof: The equality holds when the minima of f and g are realized at the same
critical point x. �
It is convenient at this point to acknowledge the evenness of the degree by
changing notation to consider P2n. We apply the lemma by using the standard
transformation x = y−a2n−1/(2na2n) to remove the term in x2n−1 from P2n(x).
Thus we have the depressed polynomial

P2n(y) = a2ny2n +
2n−2∑

j=0

bjyj. (8)

Now, we split P2n into two even-degree polynomials with positive leading
coefficients by introducing a parameter kn satisfying kn > 0 and kn > b2n−2.

P2n = [a2ny2n + (b2n−2 − kn)y2n−2] + [kny2n−2 + . . .] = P
(1)
2n + P

(2)
2n .

The minimum of P
(1)
2n is

inf(P (1)
2n ) = − (n − 1)n−1(kn − b2n−2)n

nnan−1
2n

which is obtained at the critical points y2 = (n − 1)(kn − b2n−2)/(na2n).
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Since degP
(2)
2n = 2n − 2 < 2n, we can recursively compute the minimum and

critical point of P
(2)
2n



26 S. Liang and D.J. Jeffrey

This has the advantage that the simple value 1 will be selected whenever pos-
sible, and otherwise the more complicated value is used. Several other choices
were tried, for example, ki = 1 + |b2i−2|. In either case, the results are much
simpler if Maple is able to determine the sign of b2i−2, otherwise many unsim-
plified expressions can appear in the output. The first choice gives the following
algorithm, which is presented in Maple syntax in table 1.

3 Examples

Consider the polynomial

p = x6 + x4 − 2x3 + x2 − ax + 2 . (10)

Applying the algorithm, we obtain

30299/17280− (3/20)a − (1/5)a2 . (11)

Using a numerical routine, we can choose varying values of a and compute the
numerical minimum and then plot this against the bound just obtained. This is
shown in figure 1.

a
K2 K1 0 1 2 3

min(p)

K1

1

2

Fig. 1. The minimum of the polynomial p(x) defined in (10) and the lower bound given
in (11). The solid line is the exact minimum. Although very close, the two curves never
touch.

For different values of a, this example shows both very close bounds and very
poor ones. Thus for the case a = 1.5, the lower bound on the minimum is 1.078,
whereas the true minimum is 1.085. In contrast, for large a, the exact minimum
is asymptotically −5(a/6)6/5, whereas the bound is −a2/5, so the bound can
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be arbitrarily bad in that case. However, as shown in the next section, in the
intended application, there is no need for a close bound; any bound will be just
as good.

A second example shows a different form of output. We assume the condition
a > 0 and look for a lower bound on

p = x6 + x4 − 2x3 + (1 + a)x2 − x + 2 . (12)

With the Maple assumption assume(a,positive), we obtain the bound

24251 + 24628a

3456(5 + 4a)
.

Notice that since a > 0, the denominator is never zero. We can quickly check
the accuracy of this bound by trying a numerical comparison. Thus for a = 10,
the bound takes the value 30059/17280 ≈ 1.7395, while the minimum value
is actually 1.9771. For large, positive, a the minimum is asymptotically 2 and
the bound is asymptotically 6157/3456 ≈ 1.78, so in this case the asymptotic
behaviour is good.

4 The Minimum of a Quartic Polynomial

Although the main implementation aims for a simple lower bound, it has already
been stated that the same approach can be used to find an minimum. We show
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number of degree 3, and the simplification of such numbers into lower degree
forms cannot be relied on in some systems. Therefore, if it is accepted that the
system should return the simplest expressions possible, then the best strategy in
this case is not to use (14), but instead to solve the cubic equation (17) directly.
Even if simplicity is not an issue, roundoff error in the Cardano formula often
results in a small nonzero imaginary part in k2.

For symbolic coefficients, the main problem is the specialization problem [3].
Since Theorem 1 excludes b1 = 0, it is important to see what would happen if
the formulae (13) and (14) were returned to a user and later the user substituted
coefficients giving b1 = 0. Substituting b1 = 0 into (14) gives

k2 = 1
3 (b

3
2)

1/3 + b2
2
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U(x) =
(a cos4 x + 3 sin2 x cos2 x)

cos6 x + (a sinx cos2 x + sin3 x)2
, (20)

∫
U(x) dx = arctan(a tanx + tan3 x) . (21)

It is a simple calculation to see that the integrand U(x) is continuous at x = π/2,
with U(0) = 0, but the expression for the integral is discontinuous at the same
point, having a jump of π. We have

lim) d l i m
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The second step combines the inverse tangents in pairs, again dropping the
piecewise constants. This will be a continuous expression provided

∀u ∈ R, k + uP (u) > 0 .

Since P has odd degree, uP has even degree, so again k exists. Our aim is
therefore to obtain an expression for k in each case.

For the specific integral example given in (21), we have that uP = u4 + au2,
and the above routine gives the lower bound k = −1/4 (max (1, a + 1) − a)2.
This value can now be used in (23).
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