

· Ar D R. 9

DatX tX A MatX atX, T U tX W tX O tXa, L , O tX N6A 5B7 Ca a a

Abstract. W			a		a			ťX	
		tX.W	, í	a tX		tXa	a		ťΧ
	t X (\mathbf{a}	a a	a tX)tX aX	a	N	ŧΧ	
۹,	,	a tX			а			. I	
ŧΧ	ŧΧ		N	N.	tX f	ŧΧ	a t X	,	X
			a	ŧΧ	а ;	Ţ	tX aX tX	(a	∎a tX
	a. /	4 a a	a at	х,	•	X 1	tX t	Xa	аX
ť	Ха	ŧΧ	ťX	_ ¶_ 1	Х.Т	tXa	aX		ţΧ
ŧΧ	Σ∎ X		a	tX aX	a 🗘	ζ i	€tX.		

🗶 a 🐧 aa tX

-

 $1 \quad \mathbf{I} \qquad \mathbf{1} \qquad \mathbf{I} \qquad \mathbf{1} \qquad \mathbf{I} \qquad \mathbf{1} \qquad \mathbf{I} \qquad \mathbf{I$

$$\mathbf{I} = \begin{pmatrix} \mathbf{a} \\ \mathbf{a} \\ \mathbf{b} \\ \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{c}$$

(7, -) 0, .) - 7 (. . () ()

24S. La a D.J. J >minimize(x^4 - 5*x^2 + 4*x , x); RootOf(2 _Z^3 - 5 _Z - 2, index=3)^4 - 5*RootOf(2 _Z^3 - 5 _Z - 2, index=3)^2 + 4 RootOf(2 _Z^3 - 5 _Z - 2, index=3) $\mathbf{r}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}}^{\mathbf{r}}$ **4**,F -(5/2) RootOf(2 _Z^3-5 _Z-2, index=3)^2 - 3 RootOf(2 _Z^3-5 _Z-2, index=3) oh q h h RootOf -o h h h , ql_qa, qll l_a \mathbf{A}^{-} \mathbf{L} В Lemma 1. i_{α} (i_{α}) (i_{α}) $\int_{2n}^{2n} (j) = 2n \frac{2n}{j} \frac{2n-2}{j} \frac{j}{j},$ () $b_{1} = \frac{2n}{3} q_{1}^{2n} a_{2n}^{3} b_{2n}^{3} a_{2n}^{3} q_{2n}^{3} a_{2n}^{3} a_{$ $\prod_{\substack{n \neq 2n \\ n \neq 2n \neq 2n}} 2n = 2n^{2n} (2n-2-n)^{2n-2} n^{2n-2} \dots = \begin{pmatrix} 1 \\ p \geq n \end{pmatrix} \begin{pmatrix} 2n \\ p \geq n \end{pmatrix} \begin{pmatrix} 2n \\ p \geq n \end{pmatrix}$ $\sum_{n=1}^{n} \binom{(1)}{2n} = -\frac{\binom{n}{2} - \binom{n-1}{2n-2}^n}{\binom{n}{2n} - \binom{n-1}{2n}}$ $p_{3} = \frac{1}{2}$, $\sigma_{3} p_{2} = \frac{1}{2} (n - 2n - 2) (n - 2n - 2) (n - 2n - 2)$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \\$$
 }

U iXa Para iX M aiX a P a 27

assume(a, positive) y= 🍌 🚽

 $\mathbf{T} = \mathbf{M}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} = \mathbf{P}^{\mathbf{h}} \cdot \mathbf{M}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} \cdot \mathbf{P}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} = \mathbf{M}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} = \mathbf{M}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} = \mathbf{M}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} = \mathbf{M}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} = \mathbf{M}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} = \mathbf{M}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf{h}} \cdot \mathbf{Q}^{\mathbf$

30 S. L a a D.J. J

R •

1. Ba , B., G , ax, J., K ax, D., K , B., Ta , K.: N -